

Annexure - IV

UNIVERSITY GRANTS COMMISSION BAHADUR SHAH ZAFAR MARG NEW DELHI – 110 002

Consolidated Utilization Certificate

Certified that the total amount of Rs. 10,28,000/- (Rupees Ten Lakh Twenty Eight Thousand only) received from the University Grant Commission in two installments under the scheme of support for Major Research Project entitled "Mechanoluminescence Studies of Ultravoilet Irradiated Rare Earth Doped Strantium Aluminate Nanophosphors" vide UGC file No. 42-759/2013(SR) dated 14 - 3 -2013 has been fully utilized for the purpose for which it was sanctioned and in accordance with the terms and conditions laid down by the University Grant Commission.

PRINCIPAL INVESTIGATOR DR. RAVI SHARMA PRINCIPAL INVESTIGATOR MAJOR REASEARCH PROJECT U.G.C. F.NO.- 42-759/2013(SR) DT. - 11 MARCH 2014

PR

Principal Govt. Arts and Commerce Girls College Devendra Nagar, Raipur (C G.)

TORY AUDITOR

Annexure III

UNIVERSITY GRANTS COMMISSION BAHADURSHAH ZAFAR MARG NEW DELHI- 110 002

FINAL STATEMENT OF EXPENDITURE IN RESPECT OF MAJOR RESEARCH PROJECT

1.	UGC Reference No. & Date	UGC Letter No. 42-759/2013 (SR) dated 14-3-2013	
2.	Name of the Principal investigator	Dr. Ravi Sharma	
3.	Department and University/ College where the project has undertaken	Department of Physics, Govt. Arts &Commerce Girls Collage, Devendra Nagar, Raipur, (C.G.)	
4.	Title of the Project	Mechanoluminescence Studies of Ultravoilet Irradiated Rare Earth Doped Strontium Aluminate Nanophosphors	
5.	Effective date of starting the project	1 st April	
6.	Tenure of the project	April 2013 to March 2016 extended for an year	
7.	Grant Sanctioned	10,28,000/-	
7.	Grants Received	1^{st} installment : 9,08,000/- 2^{nd} installment : 1,04,000/-	
8	Grant yet to be Received	24000/-	

Expenditure incurred:

S. No.	Item	Amount approved	Expenditure incurred so far
1.	Books & Journal	20,000/-	20,000/-
2.	Equipment	7,50,000/-	7,50,000/-
3.	Honorarium	nil	nil
4.	Project Fellow	nil	nil
5.	HRA	nil	nil
4.	Chemicals and Glassware	90,000/-	90,000/-
5.	Contingency	90,000/-	90,000/-
6.	Travel / Field work	60,000/-	60,000/-

7.	Hiring Services	Nil	Nil
8.	Overhead	18000/-	18000/-
9.	Additional Grant	Nil	Nil
10.	Total	10,28,000/-	10,28,000/-

It is certified that the grant of Rs.10, 28, 000/- (Rupees Ten lakhs Twenty eight thousand only) received from the University Grants Commission under the Scheme of support for Major Research Project entitled Mechanoluminescence Studies of Ultravoilet Irradiated Rare Earth Doped Strontium Aluminate Nanophosphors vide UGC Letter No. 42-759/2013 (SR) dated 14-3-2013 has been fully utilized for the purpose for which it was sanctioned and in accordance with the terms and conditions laid down by the University Grants Commission.

(SIGNATURES WITH SEAL)

PRINCIP JIN VESTIGATOR

PRINCIPAL INVESTIGATOR MAJOR REASEARCH PROJECT U.G.C. F.NO. - 42-759/2013(SR) DT. - 11 MARCH 2014 DR. RAVI SHARMA PRINCIPAL INVESTIGATOR MAJOR REASEARCH PROJECT U.G.C. F.NO. - 42-759/2013(SR) DT. - 11 MARCH 2014

PRI

Sovt. Arts and Commerce Girls College Devendra Napar, Rainur /C

uniful Gallans & (gr) Sh * STAUTORY AUDITOR

Final Report Assessment / Evaluation Certificate

(Two Members Expert Committee Not Belonging to the Institute of Principal Investigator) (to be submitted with the final report)

It is certified that the final report of Major Research Project entitled "Mechanoluminescence Studies of Ultravoilet Irradiated Rare Earth Doped Strantium Aluminate Nanophosphors" by Dr. Ravi Sharma Dept. of Physics, Govt. Arts and Commerce Girls College Devendra Nagar Raipur has been assessed by the committee consisting the following members for final submission of the report to the UGC, New Delhi under the scheme of Major Research Project.

Comments/Suggestions of the Expert Committee:-

The work has been satisfactorily carried out with six outstanding publications. The prepared material has potential application for mercury free fluorescence lamp. The work has potential to apply for new modified proposal also.

Name & Signatures of Experts with Date:-

Name of Expert	University/College name	Signature with Date
1. Prof. N. Brahme	SOS Physics& Astrophysics	Januelle 2021
	Pt. R. S. U. Raipur (C. G.)	25/03/

2. Dr. B. G. Sharma

RAVI SHARMA

PRINCIPAL INVESTIGATOR

MAJOR REASEARCH PROJECT J.G.C. F.NO.- 42-759/2013(SR) DT. - 11-MARCH 2014 **Dept. of Physics**

Govt. Nagarjuna P. G. College of Science

Raipur (C. G.)

* One copy of the project/project report is being kept in the pollege Abrony.

(Principa

Govt. Arts and Commerce Girls College Davendra Nagar, Raipur (C.G.)

Annexure - VIII

UNIVERSITY GRANTS COMMISSION BAHADUR SHAH ZAFAR MARG NEW DELHI – 110 002

PROFORMA FOR SUBMISSION OF INFORMATION AT THE TIME OF SENDING THE FINAL REPORT OF THE WORK DONE ON THE PROJECT

NAME AND ADDRESS OF THE PRINCIPAL INVESTIGATOR→
Dr. Ravi Sharma
NAME AND ADDRESS OF THE INSTITUTION→ Govt. Arts & Commerce Girls College

Devendra Nagar Raipur (C. G.)

2 LICO ADDDONIAL NO	(C. G.)
3. UGC APPROVAL NO. AND DATE \rightarrow UGC file No. 42	2-759/2013(SR) dated 14-3-2013
4. DATE OF IMPLEMENTATION→	1 st April 2013
5. TENURE OF THE PROJECT \rightarrow	4 years
6. TOTAL GRANT ALLOCATED \rightarrow	10 lakh 28 thousand
7. TOTAL GRANT RECEIVED →	
8. FINAL EXPENDITURE \rightarrow	10 lakh 04 thousand
	10 lakh 28 thousand
9. TITLE OF THE PROJECT→ Mechanoluminescence St	
Rare Earth Doped Stran	tium Aluminate Nanophosphors
10. OBJECTIVES OF THE PROJECT \rightarrow	Attached I
11. WHETHER OBJECTIVES WERE ACHIEVED \rightarrow	Yes, Attached IA
(GIVE DETAILS)	is so, returned TA
12. ACHIEVEMENTS FROM THE PROJECT→	Attached IB
13. SUMMARY OF THE FINDINGS→	
(IN 500 WORDS)	Attached III
14. CONTRIBUTION TO THE SOCIETY→	
(GIVE DETAILS)	Attached M
15. WHETHER ANY PH.D. ENROLLED/PRODUCED \rightarrow	
OUT OF THE PROJECT	No
16. NO. OF PUBLICATIONS OUT OF THE PROJECT→	06 Attached IV
(PLEASE ATTACH RE-PRINTS)	Court it
$\Omega \cap \mathcal{A}$	JHU1 3.17
(PRINCIPAL INVESTIGATOR AVI SHARMA	(REGISTRA DEPAIL)
ENTRO - DIMERTICATOR	WU PHINGII ALLINGS

(REGISTRA DOPATING PAL) GOVT. ARTS & COM. GIRLS COLLEGE DEVENDRA NAGAR, RAIPUR (C.Q.)

STIGATOR) U.G.C. ENO.- 42-759/2013(SR) DT. - 11 MARCH 2014 5.18 al

I/C PRINCIPAL GOVT. ARTS & COM. GIRLS COLLEGE DEVENDRA NAGAR, RAIPUR (C.G.)

PRINCIPAL INVESTIGATOR

Annexure -III

UNIVERSITY GRANTS COMMISSION BAHADUR SHAH ZAFAR MARG NEW DELHI – 110 002

Final Report of the work done on the Major Research Project

	0	
1. Project report	Final	
2. UGC Reference No.	42-759/2013 (SR) date	d 14-3-2013
3. Period of report: from	April 2013 to Ma	
4. Title of research project	Mechanoluminescence Studies of Ultra Rare Earth Doped Strontium Aluminat	Woilet Innediated
5. (a) Name of the Principal Investi		
(b) Deptt. and College where work has progressed	Department of Govt. Arts & Commerc Devendra Nagar, 1	ce Girls Collage,
6. Effective date of starting of the pr	roject · 1	se April 2013
7. Grant approved and expenditure i	ncurred during the period of the report:	96,000/-
a. Total amount approved Rs.		10, 28000/-
b. Total expenditure Rs.		10, 28000/-
c. Report of the work done: (Please a	attach a separate sheet)	
i. Brief objective of the project	Attach	ed separately I
ii. Work done so far and results achi if any, resulting from the work (Give of the journals in which it has been p	details of the papers and names bublished or accepted for publication	d separately IB4亚
iii. Has the progress been according t achieving the objective. if not, state re	o original plan of work and towards easons	Yes
iv. Please indicate the difficulties, if a project.	iny, experienced in implementing the	No
v. If project has not been completed, p which it is likely to be completed. A s period (Annual basis) may please be s	please indicate the approximate time by summary of the work done for the sent to the Commission on a	Completed

SAUJ S.1P

I/C PRINCIPAL GOVT. ARTS & COM. GIRLS COLLEGE DEVENDRA NAGAR, RAIPUR (C.G.) separate sheet

vi. If the project has been completed, please enclose a summary of the findings of the study. Two bound copies of the final report of work done may also be sent to the Commission

vii. Any other information which would help in evaluation of work done on the project. At the completion of the project, the first report should indicate the output, such as (a) Manpower trained (b) Ph. D. awarded (c) Publication of results (d) other impact, if any

SIGNATURE OF THE PR INVESTIGATOR

U.G.C. F.NO. 42 DT. - 11 MARCH 2014

.317

REGISTRACE RANGER SCOLLEGE GOVT. ARTS & COM. GIRLS COLLEGE DEVENDRA NAGAR, RASPUR (C.C.)

SIGNATURE OF THE COINVESTIGATOR

2):5,18 ali

IVC PRINCIPAL GOVT. ARTS & COM. GIRLS COLLEGE DEVENDRA NAGAR, RAIPUR (C.G.) Attached I

NIL

OBJECTIVES OF THE PROJECT

Nanophosphors have been extensively investigated during the last decade due to their potential applications for various high performances and novel displays devices. Rare earth doped alkaline earth aluminates particularly rare earth doped SrAl₂O₄ nanophosphor exhibits very bright and long lasting phosphorescence. Conventional synthesis of strontium aluminate phosphors is the solid-state reaction method, which requires extremely high temperature and a long period of sintering time. As a result, the size of the particles is relatively large and it is difficult to crush the hard phosphor blocks into small particles, which decreases the luminescence intensity. However, preparations of aluminates by combustion synthesis are less common. Therefore, we have synthesized rare earth doped SrAl₂O₄ material by a lowtemperature initiated combustion process. The effect of this method on the particle size was also the aim. In recent years, some rare earth doped SrAl₂O₄ materials have been developed whose ML emission could be seen in the day light with naked eye. Previously the mechanoluminescent materials used were giving very weak intense signals, so, the ML dosimetry was not possible. But now with the development of very bright and long lasting mechanoluminescent materials it is expected that there is possibility of ML dosimetry by these materials.

The objective of the present project was to synthesize nanophase rare earth doped SrAl₂O₄ phosphor by combustion technique. The synthesized samples were to be characterized by XRD, SEM/TEM for structural and nanophase characterization. The mechanoluminescent and photoluminescent properties were to be studied. The possible application of the material in ML Dosimetry was also planned to be studied.

The studies of ML have been made with respect to following points.

(i) Dependence of ML intensity on UV- irradiation dose given to the phosphor.

(ii) Dependence of ML intensity on applied load.

(iii) Effect of concentration variation of rare earth doping on the ML intensity.

The studies on photoluminescence (PL) includes

(i) Effect of concentration variation of rare earth doping on the ML intensity.

(ii) The effect of the particle size on the pholuminescence emission spectra.

(iii) Dependence of PL intensity on UV- irradiation dose given to the phosphor.

Objectives Achieved

The SrAl₂O₄:Eu²⁺ phosphor, SrAl₂O₄:Dy³⁺ phosphor and SrAl₂O₄:Eu²⁺, Dy³⁺ were successfully synthesized by the combustion method using H₃BO₃ as the flux. The phase structure of the phosphor was found consistent with standard tetragonal crystallography and was in well accordance with the JCPDS files. From the XRD and TEM analysis, average particle size of SrAl₂O₄: RE phosphor were in nanometer. The results showed that the doping process does not made significant changes to the morphology and size of the nanostructures. Under the ultraviolet excitation, the prepared SrAl₂O₄:Eu²⁺ phosphor emitted green light with peak at 515 nm, which was confirmed from the calculated CIE coordinates which were found to be very close to standard green light for human eyes for Eu and Eu,Dy doped samples whereas the trivalent dysprosium showed two intense fluorescence peaks in the blue and in the yellow-orange wavelength region. Brighter ML peak was recorded for the sample having H₃BO₃ as compared to the sample without H₃BO₃. Increase in the ML intensity was found with increasing concentration of Dy and the maximum intensity was found for the sample with 3% of Dy. The ML intensity of SrAl₂O₄:RE nanophosphors were found to increase with increasing stress or the applied pressure close to linearity, so, the stress or the pressure can be determined using the ML intensity. Hence ML of SrAl₂O₄: RE could be used as stress sensor or pressure sensor or pressure indicator. It has been found that the ML intensity can be recovered with the exposure of sample to UV. Therefore ML Dosimetry may be possible in this material. The spectroscopic property of the Dy doped sample in the visible emission range is suitable for fabrication of white light lamp excited by 365nm UV light. Therefore, the sample has potential application for mercury free fluorescence lamp.

ACHIEVEMENTS FROM THE PROJECT

Strontium aluminates have generally been synthesized by the solid state route, requiring high calcination temperatures. We have achieved to synthesize the rare earth doped SrAl₂O₄ nanophosphors with high brightness and long persistent luminescence at a lower temperature by combustion synthesis method. The present work achieved to determine the exact role of fluxing agent H₃BO₃ on the phosphorescence characteristics of rare earth doped SrAl₂O₄ nanophosphors. This project was on nanoparticles, which itself is an interdisciplinary field of research. It gave a chance to collaborate with other scientific community. It enhanced the scientific knowledge about the nature of the material and the effect of particle size on the luminescence properties of rare earth doped SrAl₂O₄ nanophosphors. A man power was trained for this project. The effect of UV radiation on the mechanoluminescence of strontium aluminates nanophosphors was very firstly done by us to best of our knowledge. A major instrument to measure the photoluminescence of the materials was purchased, which is an asset to the college. Six papers in the reputed international journal were achieved during this project.

CONTRIBUTION TO THE SOCIETY

The effect of UV radiation on the human society and environment is a great matter of concern in recent days. In recent years the investigation of mechanoluminescent materials exhibiting intense ML intensity during their deformation has attracted the attention of a large number of workers. As ML emission is associated with stress, fracture and damage of solids, so such inherent behavior of ML material could be used to fabricate mechanoluminescent stress, fracture and damage sensors. The intense mechanoluminescent materials have been reported to be suitable for the real-time sensing of the strength and location of damages caused by the dynamic events in an object. Rare earth doped strontium aluminate phosphors have been found useful in the real-time visualization of stress distribution in solids. This ML materials show promising application to stress sensing techniques. The stress sensing using UV irradiation is a new dimension to it. The ML materials have also been found useful in the fuse system for army warhead. The present study has relevance and importance for the society because, rare earth ions are good activator for preparation of sensors based on mechanoluminescence for example,

III

detecting earthquakes, damage detection in airplanes or cars as ML sensors are employed to detect environmental stress by means of emitted light. The spectroscopic property of these rare earth ions (Eu, Dy and Eu Dy) in the visible emission range is suitable for fabrication of white light lamp excited by 365nm UV light. Therefore, they have potential application for mercury free fluorescence lamp.

SUMMARY

Mechanoluminescence (ML) is a type of luminescence induced by mechanical deformation and fractures of solids, involve the generation, transport and recombination of free charge carriers followed by radiative and non-radiative decay of excited gas molecules and luminescence centres in solids as well as during the electrons-hole recombination. The light emissions induced by elastic deformation, plastic deformation and fracture of solids are called elastico ML(EML), plastico ML(PML) and fracto ML(FML), respectively. ML can by excited by grinding, cutting, cleaving, rubbing, shaking, scratching, compressing, loading, crushing or impulsive deformation of solids. It can also be excited by thermal shocks caused by drastic cooling or heating of materials or by the shock-waves produced during exposure of samples to laser pulses or ultrasonic waves. ML also appears during the deformation caused by the phasetransition or growth of certain crystals as well as during separation of two solids in contact.

The development of materials with strong ML intensity is an important goal in exploring applications of ML in stress indicators and other mechano-optical devices. In the recent past, systematic materials research has been done and it has resulted in producing a variety of materials that emit an intensive and repeatable ML during deformation. The examples of mechanoluminescent materials are: coloured alkali halide crystals, ZnS: Mn, SrAl₂O₄: Eu, ZnGa₂O₄: Mn, MgGa₂O₄: Mn, BaAl₂SiO₈: rare earth element, Ca₂Al₂SiO₇: Ce and few polymers etc. Strontium aluminates has particular properties such as high quantum efficiency, long persistence of phosphorescence and good stability hence they can be used for luminous paints in high way, airport, buildings and ceramic products.

In the present work the $SrAl_2O_4:Eu^{2+}$ phosphor, $SrAl_2O_4:Dy^{3+}$ phosphor and $SrAl_2O_4:Eu^{2+}$, Dy^{3+} were successfully synthesized by the combustion method using H₃BO₃ as the flux. The phase structure of the $SrAl_2O_4:Eu^{2+}$ phosphor is consistent with standard tetragonal crystallography. The XRD graph of the prepared sample was in well accordance with the JCPDS files. From the XRD and TEM analysis, average particle size of $SrAl_2O_4$: RE phosphor were in nanometer. The results showed that the doping process does not made significant changes to the morphology and size of the nanostructures. The radius of Eu^{2+} (1.12 Å) are very close to that of

 Sr^{2+} (1.12 Å) rather than Al^{3+} (0.57 Å). Therefore, the Eu²⁺ ions are expected to occupy the Sr^{2+} sites in the SrAl₂O₄ host. Under the ultra-violet excitation, the prepared SrAl₂O₄:Eu²⁺ phosphor would emit green light with peak at 515 nm corresponds to the transitions of ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$, ${}^{4}F_{9/2}$ \rightarrow ⁶H_{13/2} and ⁴F_{9/2} \rightarrow ⁶H_{11/2} respectively. The PL emission exhibited a green light which was confirmed from the calculated CIE coordinates which were found to be very close to standard green light for human eyes for Eu and Eu,Dy doped samples whereas the trivalent dysprosium showed two intense fluorescence peaks in the blue and in the yellow-orange wavelength region. The maximum PL intensity as well as ML intensity was recorded for the sample with 3% of Dy. It is worthy to note that the dependence between ML intensity of SrAl₂O₄:Eu²⁺ phosphor and the load is close to linearity. For $SrAl_2O_4$: Dy^{3+} sample the ML intensity – time graph showed two peaks. Brighter ML peak was recorded for the sample having H₃BO₃ as compared to the sample without H₃BO₃. Increase in the ML intensity was found with increasing concentration of Dy and the maximum intensity was found for the sample with 3% of Dy. Based on the above analysis this phosphors could also be used as sensors to detect the stress on an object. Thus, the combustion synthesis method furnishes a simple method for preparing aluminate based phosphor The ML intensity of SrAl₂O₄:RE nanophosphors were found to increase with increasing stress or the applied pressure, the stress or the pressure can be determined using the ML intensity. Hence ML of SrAl₂O₄: RE could be used as stress sensor or pressure sensor or pressure indicator. It has been found that the ML intensity can be recovered with the exposure of sample to UV. Therefore ML dosimetry may be possible in this material. The spectroscopic property of the Dy doped sample in the visible emission range is suitable for fabrication of white light lamp excited by 365nm UV light. Therefore, the sample has potential application for mercury free fluorescence lamp.