


Quadratic Formula

If , then

Binomial Theorem

. . . (x2 1)

Products of Vectors

Let u be the smaller of the two angles between and .

Then

� � � � axbx � ayby � azbz � ab cos u

Trigonometric Identities

*See Appendix E for a more complete list.

cos a � cos b � 2 cos 12(a � b) cos 12(a � b)

sin a � sin b � 2 sin 12(a � b) cos 12(a � b)
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| � ab sin u

� (axby � bxay)k̂� (aybz � byaz)î � (azbx � bzax)ĵ
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nx
1!

�
n(n � 1)x2

2!
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x �
�b � 1b2 � 4ac

2a
ax2 � bx � c � 0

Derivatives and Integrals

Cramer’s Rule

Two simultaneous equations in unknowns x and y,

a1x � b1y � c1 and a2x � b2y � c2,

have the solutions

and

.y �
� a1

a2

c1

c2
�

� a1

a2

b1

b2
�

�
a1c2 � a2c1

a1b2 � a2b1

x �
� c1

c2

b1

b2
�

� a1

a2

b1

b2
�

�
c1b2 � c2b1

a1b2 � a2b1

� dx
(x2 � a2)3/2 �

x
a2(x2 � a2)1/2

� x dx
(x2 � a2)3/2 � �

1
(x2 � a2)1/2

� dx

2x2 � a2
� ln(x � 2x2 � a2)

�ex dx � exd
dx

ex � ex

�cos x dx � sin x
d

dx
 cos x � �sin x

�sin x dx � �cos x
d

dx
 sin x � cos x

SI PREFIXES*
Factor Prefix Symbol Factor Prefix Symbol

1024 yotta Y 10–1 deci d
1021 zetta Z 10–2 centi c
1018 exa E 10–3 milli m
1015 peta P 10–6 micro m

1012 tera T 10–9 nano n
109 giga G 10–12 pico p
106 mega M 10–15 femto f
103 kilo k 10–18 atto a
102 hecto h 10–21 zepto z
101 deka da 10–24 yocto y

*In all cases, the first syllable is accented, as in ná-no-mé-ter.

MATHEMATICAL FORMULAS*
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P R E F A C E

WHY I WROTE THIS BOOK
Fun with a big challenge. That is how I have regarded physics since the day when Sharon, one of the
students in a class I taught as a graduate student, suddenly demanded of me, “What has any of this
got to do with my life?” Of course I immediately responded, “Sharon, this has everything to do with
your life—this is physics.”

She asked me for an example. I thought and thought but could not come up
with a single one.That night I began writing the book The Flying Circus of Physics
(John Wiley & Sons Inc., 1975) for Sharon but also for me because I realized her
complaint was mine. I had spent six years slugging my way through many dozens of
physics textbooks that were carefully written with the best of pedagogical plans, but
there was something missing. Physics is the most interesting subject in the world
because it is about how the world works, and yet the textbooks had been thor-
oughly wrung of any connection with the real world.The fun was missing.

I have packed a lot of real-world physics into Fundamentals of Physics, con-
necting it with the new edition of The Flying Circus of Physics. Much of the mate-
rial comes from the introductory physics classes I teach, where I can judge from the
faces and blunt comments what material and presentations work and what do not.
The notes I make on my successes and failures there help form the basis of this
book. My message here is the same as I had with every student I’ve met since
Sharon so long ago: “Yes, you can reason from basic physics concepts all the way to
valid conclusions about the real world, and that understanding of the real world is
where the fun is.”

I have many goals in writing this book but the overriding one is to provide in-
structors with tools by which they can teach students how to effectively read scientific material, iden-
tify fundamental concepts, reason through scientific questions, and solve quantitative problems. This
process is not easy for either students or instructors. Indeed, the course associated with this book may
be one of the most challenging of all the courses taken by a student. However, it can also be one of
the most rewarding because it reveals the world’s fundamental clockwork from which all scientific
and engineering applications spring.

Many users of the ninth edition (both instructors and students) sent in comments and
suggestions to improve the book. These improvements are now incorporated into the narrative
and problems throughout the book. The publisher John Wiley & Sons and I regard the book as
an ongoing project and encourage more input from users. You can send suggestions, corrections,
and positive or negative comments to John Wiley & Sons or Jearl Walker (mail address:
Physics Department, Cleveland State University, Cleveland, OH 44115 USA; or the blog site at
www.flyingcircusofphysics.com). We may not be able to respond to all suggestions, but we keep
and study each of them.

WHAT’S NEW?
Modules and Learning Objectives “What was I supposed to learn from this section?” Students have
asked me this question for decades, from the weakest student to the strongest. The problem is that
even a thoughtful student may not feel confident that the important points were captured while read-
ing a section. I felt the same way back when I was using the first edition of Halliday and Resnick
while taking first-year physics.

To ease the problem in this edition, I restructured the chapters into concept modules based on a
primary theme and begin each module with a list of the module’s learning objectives. The list is an
explicit statement of the skills and learning points that should be gathered in reading the module.
Each list is following by a brief summary of the key ideas that should also be gathered. For example,
check out the first module in Chapter 16, where a student faces a truck load of concepts and terms.
Rather than depending on the student’s ability to gather and sort those ideas, I now provide an
explicit checklist that functions somewhat like the checklist a pilot works through before taxiing out
to the runway for takeoff.

xvii
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Links Between Homework Problems and Learning Objectives In WileyPLUS, every question and prob-
lem at the end of the chapter is linked to a learning objective, to answer the (usually unspoken) ques-
tions, “Why am I working this problem? What am I supposed to learn from it?” By being explicit
about a problem’s purpose, I believe that a student might better transfer the learning objective to
other problems with a different wording but the same key idea. Such transference would help defeat
the common trouble that a student learns to work a particular problem but cannot then apply its key
idea to a problem in a different setting.

Rewritten Chapters My students have continued to be challenged by several key chapters and by
spots in several other chapters and so, in this edition, I rewrote a lot of the material. For example, I
redesigned the chapters on Gauss’ law and electric potential, which have proved to be tough-going
for my students. The presentations are now smoother and more direct to the key points. In the quan-
tum chapters, I expanded the coverage of the Schrödinger equation, including reflection of matter
waves from a step potential. At the request of several instructors, I decoupled the discussion of the
Bohr atom from the Schrödinger solution for the hydrogen atom so that the historical account of
Bohr’s work can be bypassed. Also, there is now a module on Planck’s blackbody radiation.

New Sample Problems and Homework Questions and Problems Sixteen new sample problems have
been added to the chapters, written so as to spotlight some of the difficult areas for my students.Also,
about 250 problems and 50 questions have been added to the homework sections of the chapters.
Some of these problems come from earlier editions of the
book, as requested by several instructors.

Video Illustrations In the eVersion of the text available in
WileyPLUS, David Maiullo of Rutgers University has
created video versions of approximately 30 of the photo-
graphs and figures from the text. Much of physics is the
study of things that move and video can often provide a
better representation than a static photo or figure.

Online Aid WileyPLUS is not just an online grading pro-
gram. Rather, it is a dynamic learning center stocked with many different learning aids, including
just-in-time problem-solving tutorials, embedded reading quizzes to encourage reading, animated
figures, hundreds of sample problems, loads of simulations and demonstrations, and over 1500 videos
ranging from math reviews to mini-lectures to examples. More of these learning aids are added every
semester. For this 10th edition of HRW, some of the photos involving motion have been converted
into videos so that the motion can be slowed and analyzed.

These thousands of learning aids are available 24/7 and can be repeated as many times as de-
sired. Thus, if a student gets stuck on a homework problem at, say, 2:00 AM (which appears to be a
popular time for doing physics homework), friendly and helpful resources are available at the click of
a mouse.

LEARNINGS TOOLS
When I learned first-year physics in the first edition of
Halliday and Resnick, I caught on by repeatedly reread-
ing a chapter. These days we better understand that
students have a wide range of learning styles. So, I have
produced a wide range of learning tools, both in this new
edition and online in WileyPLUS:

Animations of one of the key figures in each chapter.
Here in the book, those figures are flagged with the
swirling icon. In the online chapter in WileyPLUS, a
mouse click begins the animation. I have chosen the fig-
ures that are rich in information so that a student can see
the physics in action and played out over a minute or two

A
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instead of just being flat on a printed page. Not only does this give life to the physics, but the anima-
tion can be repeated as many times as a student wants.

Videos I have made well over 1500 instructional videos, with more coming each semester. Students
can watch me draw or type on the screen as they hear me talk about a solution, tutorial, sample prob-
lem, or review, very much as they would experience were they sitting next to me in my office while I
worked out something on a notepad. An instructor’s lectures and tutoring will always be the most
valuable learning tools, but my videos are available 24 hours a day, 7 days a
week, and can be repeated indefinitely.

• Video tutorials on subjects in the chapters. I chose the subjects that chal-
lenge the students the most, the ones that my students scratch their heads
about.

• Video reviews of high school math, such as basic algebraic manipulations,
trig functions, and simultaneous equations.

• Video introductions to math, such as vector multiplication, that will be new
to the students.

• Video presentations of every Sample Problem in the textbook chapters . My
intent is to work out the physics, starting with the Key Ideas instead of just
grabbing a formula. However, I also want to demonstrate how to read a sam-
ple problem, that is, how to read technical material to learn problem-solving
procedures that can be transferred to other types of problems.

• Video solutions to 20% of the end-of chapter problems. The availability and
timing of these solutions are controlled by the instructor. For example, they
might be available after a homework deadline or a quiz. Each solution is not
simply a plug-and-chug recipe. Rather I build a solution from the Key Ideas to
the first step of reasoning and to a final solution. The student learns not just
how to solve a particular problem but how to tackle any problem, even those
that require physics courage.

• Video examples of how to read data from graphs (more than simply reading
off a number with no comprehension of the physics).

Problem-Solving Help I have written a large number of resources for
WileyPLUS designed to help build the students’ problem-solving skills.

• Every sample problem in the textbook is available online in both reading
and video formats.

• Hundreds of additional sample problems. These are available as stand-
alone resources but (at the discretion of the instructor) they are also linked
out of the homework problems. So, if a homework problem deals with, say,
forces on a block on a ramp, a link to a related sample problem is provided.
However, the sample problem is not just a replica of the homework problem
and thus does not provide a solution that can be merely duplicated without
comprehension.

• GO Tutorials for 15% of the end-of-chapter homework problems. In multi-
ple steps, I lead a student through a homework problem, starting with the Key
Ideas and giving hints when wrong answers are submitted. However, I pur-
posely leave the last step (for the final answer) to the student so that they are
responsible at the end. Some online tutorial systems trap a student when
wrong answers are given, which can generate a lot of frustration. My GO
Tutorials are not traps, because at any step along the way, a student can return
to the main problem.

• Hints on every end-of-chapter homework problem are available (at the
discretion of the instructor). I wrote these as true hints about the main ideas
and the general procedure for a solution, not as recipes that provide an answer without any
comprehension.
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Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

PREFACE

Evaluation Materials
• Reading questions are available within each online section. I wrote these so that they do not
require analysis or any deep understanding; rather they simply test whether a student has read the
section. When a student opens up a section, a randomly chosen reading question (from a bank of
questions) appears at the end. The instructor can decide whether the question is part of the grading
for that section or whether it is just for the benefit of the student.

• Checkpoints are available within most sections. I wrote these so that they require analysis and deci-
sions about the physics in the section. Answers to all checkpoints are in the back of the book.

VERSIONS OF THE TEXT
To accommodate the individual needs of instructors and students, the ninth edition of Fundamentals
of Physics is available in a number of different versions.

The Regular Edition consists of Chapters 1 through 37 (ISBN 9781118230718).

The Extended Edition contains seven additional chapters on quantum physics and cosmology,
Chapters 1–44 (ISBN 9781118230725).

Volume 1 –– Chapters 1–20 (Mechanics and Thermodynamics), hardcover,
ISBN 9781118233764

Volume 2 –– Chapters 21–44 (E&M, Optics, and Quantum Physics), hardcover,
ISBN 9781118230732

• All end-of-chapter homework Problems in the book (and many more problems) are available in
WileyPLUS. The instructor can construct a homework assignment and control how it is graded when
the answers are submitted online. For example, the instructor controls the deadline for submission
and how many attempts a student is allowed on an answer. The instructor also controls which, if any,
learning aids are available with each homework problem. Such links can include hints, sample prob-
lems, in-chapter reading materials, video tutorials, video math reviews, and even video solutions
(which can be made available to the students after, say, a homework deadline).

• Symbolic notation problems that require algebraic answers are available in every chapter.

• All end-of-chapter homework Questions in the book are available for assignment in WileyPLUS.
These Questions (in a multiple choice format) are designed to evaluate the students’ conceptual un-
derstanding.

Icons for Additional Help When worked-out solutions are provided either in print or electronically
for certain of the odd-numbered problems, the statements for those problems include an icon to alert
both student and instructor as to where the solutions are located. There are also icons indicating
which problems have GO Tutorial, an Interactive LearningWare, or a link to the The Flying Circus
of Physics. An icon guide is provided here and at the beginning of each set of problems.

Checkpoint 1
Here are three pairs of initial and final positions, respectively, along an x axis.Which
pairs give a negative displacement: (a) �3 m, �5 m; (b) �3 m, �7 m; (c) 7 m, �3 m?

http://www.wiley.com/college/halliday
www.flyingcircusofphysics.com
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INSTRUCTOR SUPPLEMENTS
Instructor’s Solutions Manual by Sen-Ben Liao, Lawrence Livermore National Laboratory. This man-
ual provides worked-out solutions for all problems found at the end of each chapter. It is available
in both MSWord and PDF.

Instructor Companion Site http://www.wiley.com/college/halliday

• Instructor’s Manual This resource contains lecture notes outlining the most important topics of
each chapter; demonstration experiments; laboratory and computer projects; film and video sources;
answers to all Questions, Exercises, Problems, and Checkpoints; and a correlation guide to the
Questions, Exercises, and Problems in the previous edition. It also contains a complete list of all
problems for which solutions are available to students (SSM,WWW, and ILW).

• Lecture PowerPoint Slides These PowerPoint slides serve as a helpful starter pack for instructors,
outlining key concepts and incorporating figures and equations from the text.

• Classroom Response Systems (“Clicker”) Questions by David Marx, Illinois State University.
There are two sets of questions available: Reading Quiz questions and Interactive Lecture ques-
tions.The Reading Quiz questions are intended to be relatively straightforward for any student who
reads the assigned material.The Interactive Lecture questions are intended for use in an interactive
lecture setting.

• Wiley Physics Simulations by Andrew Duffy, Boston University and John Gastineau, Vernier
Software. This is a collection of 50 interactive simulations (Java applets) that can be used for class-
room demonstrations.

• Wiley Physics Demonstrations by David Maiullo, Rutgers University. This is a collection of digital
videos of 80 standard physics demonstrations. They can be shown in class or accessed from
WileyPLUS.There is an accompanying Instructor’s Guide that includes “clicker” questions.

• Test Bank For the 10th edition, the Test Bank has been completely over-hauled by Suzanne Willis,
Northern Illinois University. The Test Bank includes more than 2200 multiple-choice questions.
These items are also available in the Computerized Test Bank which provides full editing features to
help you customize tests (available in both IBM and Macintosh versions).

• All text illustrations suitable for both classroom projection and printing.

Online Homework and Quizzing. In addition to WileyPLUS, Fundamentals of Physics, tenth edition,
also supports WebAssignPLUS and LON-CAPA, which are other programs that give instructors the
ability to deliver and grade homework and quizzes online. WebAssign PLUS also offers students an
online version of the text.

STUDENT SUPPLEMENTS
Student Companion Site. The web site http://www.wiley.com/college/halliday was developed specifi-
cally for Fundamentals of Physics, tenth edition, and is designed to further assist students in the study
of physics. It includes solutions to selected end-of-chapter problems (which are identified with a
www icon in the text); simulation exercises; tips on how to make best use of a programmable calcu-
lator; and the Interactive LearningWare tutorials that are described below.

Student Study Guide (ISBN 9781118230787) by Thomas Barrett of Ohio State University. The Student
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Interactive Learningware. This software guides students through solutions to 200 of the end-of-chapter
problems. These problems are indicated with an ILW icon in the text. The solutions process is devel-
oped interactively, with appropriate feedback and access to error-specific help for the most common
mistakes.

Introductory Physics with Calculus as a Second Language: (ISBN 9780471739104) Mastering
Problem Solving by Thomas Barrett of Ohio State University. This brief paperback teaches the
student how to approach problems more efficiently and effectively. The student will learn how to
recognize common patterns in physics problems, break problems down into manageable steps, and
apply appropriate techniques. The book takes the student step by step through the solutions to
numerous examples.
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C H A P T E R  1

Measurement

1-1 MEASURING THINGS, INCLUDING LENGTHS
Learning Objectives
After reading this module, you should be able to . . .

1.01 Identify the base quantities in the SI system.
1.02 Name the most frequently used prefixes for

SI units.

1.03 Change units (here for length, area, and volume) by 
using chain-link conversions.

1.04 Explain that the meter is defined in terms of the speed of
light in vacuum.

Key Ideas
● Physics is based on measurement of physical quantities.
Certain physical quantities have been chosen as base quanti-
ties (such as length, time, and mass); each has been defined in
terms of a standard and given a unit of measure (such as meter,
second, and kilogram). Other physical quantities are defined in
terms of the base quantities and their standards and units.

● The unit system emphasized in this book is the International
System of Units (SI). The three physical quantities displayed
in Table 1-1 are used in the early chapters. Standards, which
must be both accessible and invariable, have been estab-
lished for these base quantities by international agreement.

These standards are used in all physical measurement, for
both the base quantities and the quantities derived from
them. Scientific notation and the prefixes of Table 1-2 are
used to simplify measurement notation.

● Conversion of units may be performed by using chain-link
conversions in which the original data are multiplied succes-
sively by conversion factors written as unity and the units are
manipulated like algebraic quantities until only the desired
units remain.

● The meter is defined as the distance traveled by light 
during a precisely specified time interval.

What Is Physics?
Science and engineering are based on measurements and comparisons. Thus, we
need rules about how things are measured and compared, and we need
experiments to establish the units for those measurements and comparisons. One
purpose of physics (and engineering) is to design and conduct those experiments.

For example, physicists strive to develop clocks of extreme accuracy so that any
time or time interval can be precisely determined and compared. You may wonder
whether such accuracy is actually needed or worth the effort. Here is one example of
the worth: Without clocks of extreme accuracy, the Global Positioning System
(GPS) that is now vital to worldwide navigation would be useless.

Measuring Things
We discover physics by learning how to measure the quantities involved in
physics. Among these quantities are length, time, mass, temperature, pressure,
and electric current.

We measure each physical quantity in its own units, by comparison with a
standard. The unit is a unique name we assign to measures of that quantity—for
example, meter (m) for the quantity length. The standard corresponds to exactly
1.0 unit of the quantity. As you will see, the standard for length, which corresponds



to exactly 1.0 m, is the distance traveled by light in a vacuum during a certain
fraction of a second. We can define a unit and its standard in any way we care to.
However, the important thing is to do so in such a way that scientists around the
world will agree that our definitions are both sensible and practical.

Once we have set up a standard—say, for length—we must work out proce-
dures by which any length whatever, be it the radius of a hydrogen atom, the
wheelbase of a skateboard, or the distance to a star, can be expressed in terms of
the standard. Rulers, which approximate our length standard, give us one such
procedure for measuring length. However, many of our comparisons must be
indirect. You cannot use a ruler, for example, to measure the radius of an atom
or the distance to a star.

Base Quantities. There are so many physical quantities that it is a problem to
organize them. Fortunately, they are not all independent; for example, speed is the
ratio of a length to a time. Thus, what we do is pick out—by international agree-
ment—a small number of physical quantities, such as length and time, and assign
standards to them alone. We then define all other physical quantities in terms of
these base quantities and their standards (called base standards). Speed, for example,
is defined in terms of the base quantities length and time and their base standards.

Base standards must be both accessible and invariable. If we define the
length standard as the distance between one’s nose and the index finger on an
outstretched arm, we certainly have an accessible standard—but it will, of course,
vary from person to person.The demand for precision in science and engineering
pushes us to aim first for invariability. We then exert great effort to make dupli-
cates of the base standards that are accessible to those who need them.

The International System of Units
In 1971, the 14th General Conference on Weights and Measures picked seven
quantities as base quantities, thereby forming the basis of the International
System of Units, abbreviated SI from its French name and popularly known as
the metric system.Table 1-1 shows the units for the three base quantities—length,
mass, and time—that we use in the early chapters of this book. These units were
defined to be on a “human scale.”

Many SI derived units are defined in terms of these base units. For example,
the SI unit for power, called the watt (W), is defined in terms of the base units
for mass, length, and time.Thus, as you will see in Chapter 7,

1 watt � 1 W � 1 kg � m2/s3, (1-1)

where the last collection of unit symbols is read as kilogram-meter squared per
second cubed.

To express the very large and very small quantities we often run into in
physics, we use scientific notation, which employs powers of 10. In this notation,

3 560 000 000 m � 3.56 � 109 m (1-2)

and 0.000 000 492 s � 4.92 � 10�7 s. (1-3)

Scientific notation on computers sometimes takes on an even briefer look, as in
3.56 E9 and 4.92 E–7, where E stands for “exponent of ten.” It is briefer still on
some calculators, where E is replaced with an empty space.

As a further convenience when dealing with very large or very small mea-
surements, we use the prefixes listed in Table 1-2. As you can see, each prefix
represents a certain power of 10, to be used as a multiplication factor. Attaching
a prefix to an SI unit has the effect of multiplying by the associated factor. Thus,
we can express a particular electric power as

1.27 � 109 watts � 1.27 gigawatts � 1.27 GW (1-4)

2 CHAPTER 1 MEASUREMENT

Table 1-1 Units for Three SI 
Base Quantities

Quantity Unit Name Unit Symbol

Length meter m
Time second s
Mass kilogram kg

Table 1-2 Prefixes for SI Units

Factor Prefixa Symbol

1024 yotta- Y
1021 zetta- Z
1018 exa- E
1015 peta- P
1012 tera- T
109 giga- G
106 mega- M
103 kilo- k
102 hecto- h
101 deka- da
10�1 deci- d
10�2 centi- c
10�3 milli- m
10�6 micro- m
10�9 nano- n
10�12 pico- p
10�15 femto- f
10�18 atto- a
10�21 zepto- z
10�24 yocto- y

aThe most frequently used prefixes are shown in
bold type.



or a particular time interval as

2.35 � 10�9 s � 2.35 nanoseconds � 2.35 ns. (1-5)

Some prefixes, as used in milliliter, centimeter, kilogram, and megabyte, are
probably familiar to you.

Changing Units
We often need to change the units in which a physical quantity is expressed. We
do so by a method called chain-link conversion. In this method, we multiply the
original measurement by a conversion factor (a ratio of units that is equal to
unity). For example, because 1 min and 60 s are identical time intervals, we have

Thus, the ratios (1 min)/(60 s) and (60 s)/(1 min) can be used as conversion
factors. This is not the same as writing or 60 � 1; each number and its unit
must be treated together.

Because multiplying any quantity by unity leaves the quantity unchanged, we
can introduce conversion factors wherever we find them useful. In chain-link
conversion, we use the factors to cancel unwanted units. For example, to convert
2 min to seconds, we have

(1-6)

If you introduce a conversion factor in such a way that unwanted units do not
cancel, invert the factor and try again. In conversions, the units obey the same
algebraic rules as variables and numbers.

Appendix D gives conversion factors between SI and other systems of units,
including non-SI units still used in the United States. However, the conversion
factors are written in the style of “1 min � 60 s” rather than as a ratio. So, you
need to decide on the numerator and denominator in any needed ratio.

Length
In 1792, the newborn Republic of France established a new system of weights
and measures. Its cornerstone was the meter, defined to be one ten-millionth of
the distance from the north pole to the equator. Later, for practical reasons, this
Earth standard was abandoned and the meter came to be defined as the distance
between two fine lines engraved near the ends of a platinum–iridium bar, the
standard meter bar, which was kept at the International Bureau of Weights and
Measures near Paris. Accurate copies of the bar were sent to standardizing labo-
ratories throughout the world. These secondary standards were used to produce
other, still more accessible standards, so that ultimately every measuring device
derived its authority from the standard meter bar through a complicated chain
of comparisons.

Eventually, a standard more precise than the distance between two fine
scratches on a metal bar was required. In 1960, a new standard for the meter,
based on the wavelength of light, was adopted. Specifically, the standard for the
meter was redefined to be 1 650 763.73 wavelengths of a particular orange-red
light emitted by atoms of krypton-86 (a particular isotope, or type, of krypton) in
a gas discharge tube that can be set up anywhere in the world. This awkward
number of wavelengths was chosen so that the new standard would be close to
the old meter-bar standard.

2 min � (2 min)(1) � (2 min)� 60 s
1 min � � 120 s.

1
60 � 1

1 min
60 s

� 1  and  
60 s

1 min
� 1.
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By 1983, however, the demand for higher precision had reached such a point
that even the krypton-86 standard could not meet it, and in that year a bold step was
taken. The meter was redefined as the distance traveled by light in a specified time
interval. In the words of the 17th General Conference on Weights and Measures:

4 CHAPTER 1 MEASUREMENT

The meter is the length of the path traveled by light in a vacuum during a time
interval of 1/299 792 458 of a second.

Table 1-3 Some Approximate Lengths

Measurement Length in Meters

Distance to the first 
galaxies formed 2 � 1026

Distance to the 
Andromeda galaxy 2 � 1022

Distance to the nearby 
star Proxima Centauri 4 � 1016

Distance to Pluto 6 � 1012

Radius of Earth 6 � 106

Height of Mt. Everest 9 � 103

Thickness of this page 1 � 10�4

Length of a typical virus 1 � 10�8

Radius of a hydrogen atom 5 � 10�11

Radius of a proton 1 � 10�15

This time interval was chosen so that the speed of light c is exactly

c � 299 792 458 m/s.

Measurements of the speed of light had become extremely precise, so it made
sense to adopt the speed of light as a defined quantity and to use it to redefine
the meter.

Table 1-3 shows a wide range of lengths, from that of the universe (top line)
to those of some very small objects.

Significant Figures and Decimal Places
Suppose that you work out a problem in which each value consists of two digits.
Those digits are called significant figures and they set the number of digits that
you can use in reporting your final answer. With data given in two significant 
figures, your final answer should have only two significant figures. However,
depending on the mode setting of your calculator, many more digits might be 
displayed.Those extra digits are meaningless.

In this book, final results of calculations are often rounded to match the least
number of significant figures in the given data. (However, sometimes an extra
significant figure is kept.) When the leftmost of the digits to be discarded is 5 or
more, the last remaining digit is rounded up; otherwise it is retained as is. For 
example, 11.3516 is rounded to three significant figures as 11.4 and 11.3279 is
rounded to three significant figures as 11.3. (The answers to sample problems in
this book are usually presented with the symbol � instead of � even if rounding
is involved.)

When a number such as 3.15 or 3.15 � 103 is provided in a problem, the number
of significant figures is apparent, but how about the number 3000? Is it known to
only one significant figure (3 � 103)? Or is it known to as many as four significant
figures (3.000 � 103)? In this book, we assume that all the zeros in such given num-
bers as 3000 are significant, but you had better not make that assumption elsewhere.

Don’t confuse significant figures with decimal places. Consider the lengths
35.6 mm, 3.56 m, and 0.00356 m. They all have three significant figures but they
have one, two, and five decimal places, respectively.

ball’s builder most unhappy. Instead, because we want only
the nearest order of magnitude, we can estimate any quanti-
ties required in the calculation.

Calculations: Let us assume the ball is spherical with radius 
R � 2 m. The string in the ball is not closely packed (there
are uncountable gaps between adjacent sections of string).
To allow for these gaps, let us somewhat overestimate

Sample Problem 1.01 Estimating order of magnitude, ball of string

The world’s largest ball of string is about 2 m in radius. To
the nearest order of magnitude, what is the total length L
of the string in the ball?

KEY IDEA

We could, of course, take the ball apart and measure the to-
tal length L, but that would take great effort and make the
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Additional examples, video, and practice available at WileyPLUS

1-2 TIME
Learning Objectives
After reading this module, you should be able to . . .

1.05 Change units for time by using chain-link conversions.
1.06 Use various measures of time, such as for motion or as

determined on different clocks. 

Key Idea
● The second is defined in terms of the oscillations of light
emitted by an atomic (cesium-133) source. Accurate time

signals are sent worldwide by radio signals keyed to atomic
clocks in standardizing laboratories.

Time
Time has two aspects. For civil and some scientific purposes, we want to know
the time of day so that we can order events in sequence. In much scientific work,
we want to know how long an event lasts. Thus, any time standard must be able
to answer two questions: “When did it happen?” and “What is its duration?”
Table 1-4 shows some time intervals.

Any phenomenon that repeats itself is a possible time standard. Earth’s
rotation, which determines the length of the day, has been used in this way for
centuries; Fig. 1-1 shows one novel example of a watch based on that rotation.
A quartz clock, in which a quartz ring is made to vibrate continuously, can be
calibrated against Earth’s rotation via astronomical observations and used to
measure time intervals in the laboratory. However, the calibration cannot be
carried out with the accuracy called for by modern scientific and engineering
technology.

Table 1-4 Some Approximate Time Intervals

Time Interval 
Measurement in Seconds

Lifetime of the 
proton (predicted) 3 � 1040

Age of the universe 5 � 1017

Age of the pyramid of Cheops 1 � 1011

Human life expectancy 2 � 109

Length of a day 9 � 104

aThis is the earliest time after the big bang at which the laws of physics as we know them can be applied.

Time between human heartbeats 8 � 10�1

Lifetime of the muon 2 � 10�6

Shortest lab light pulse 1 � 10�16

Lifetime of the most 
unstable particle 1 � 10�23

The Planck timea 1 � 10�43

Time Interval 
Measurement in Seconds

the cross-sectional area of the string by assuming the
cross section is square, with an edge length d � 4 mm.
Then, with a cross-sectional area of d2 and a length L, the
string occupies a total volume of

V � (cross-sectional area)(length) � d2L.

This is approximately equal to the volume of the ball, given
by , which is about 4R3 because p is about 3. Thus, we
have the following

4
3
R3

d2L � 4R3,

or

� 2 � 106 m � 106 m � 103 km.
(Answer)

(Note that you do not need a calculator for such a simplified
calculation.) To the nearest order of magnitude, the ball
contains about 1000 km of string!

L �
4R3

d 2 �
4(2 m)3

(4 � 10�3 m)2

Figure 1-1 When the metric system was
proposed in 1792, the hour was redefined
to provide a 10-hour day. The idea did not
catch on. The maker of this 10-hour watch
wisely provided a small dial that kept con-
ventional 12-hour time. Do the two dials
indicate the same time?

Steven Pitkin



Atomic clocks are so consistent that, in principle, two cesium clocks would have to
run for 6000 years before their readings would differ by more than 1 s. Even such
accuracy pales in comparison with that of clocks currently being developed; their
precision may be 1 part in 1018—that is, 1 s in 1 � 1018 s (which is about 3 � 1010 y).

6 CHAPTER 1 MEASUREMENT

To meet the need for a better time standard, atomic clocks have
been developed. An atomic clock at the National Institute of
Standards and Technology (NIST) in Boulder, Colorado, is the stan-
dard for Coordinated Universal Time (UTC) in the United States. Its
time signals are available by shortwave radio (stations WWV and
WWVH) and by telephone (303-499-7111). Time signals (and related
information) are also available from the United States Naval
Observatory at website http://tycho.usno.navy.mil/time.html. (To set a
clock extremely accurately at your particular location, you would have
to account for the travel time required for these signals to reach you.)

Figure 1-2 shows variations in the length of one day on Earth over
a 4-year period, as determined by comparison with a cesium
(atomic) clock. Because the variation displayed by Fig. 1-2 is sea-
sonal and repetitious, we suspect the rotating Earth when there is a
difference between Earth and atom as timekeepers. The variation is

due to tidal effects caused by the Moon and to large-scale winds.
The 13th General Conference on Weights and Measures in 1967 adopted

a standard second based on the cesium clock:

One second is the time taken by 9 192 631 770 oscillations of the light (of a specified
wavelength) emitted by a cesium-133 atom.

Figure 1-2 Variations in the length of the
day over a 4-year period. Note that the
entire vertical scale amounts to only 
3 ms (� 0.003 s).
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1-3 MASS
Learning Objectives
After reading this module, you should be able to . . .

1.07 Change units for mass by using chain-link 
conversions.

1.08 Relate density to mass and volume when the mass is
uniformly distributed. 

Key Ideas
● The kilogram is defined in terms of a platinum–iridium
standard mass kept near Paris. For measurements on an
atomic scale, the atomic mass unit, defined in terms of 
the atom carbon-12, is usually used. 

● The density of a material is the mass per unit volume:  

� �
m
V

.

�

Figure 1-3 The international 1 kg standard of
mass, a platinum–iridium cylinder 3.9 cm in
height and in diameter.

Mass
The Standard Kilogram
The SI standard of mass is a cylinder of
platinum and iridium (Fig. 1-3) that is kept
at the International Bureau of Weights
and Measures near Paris and assigned, by

C
ou

rt
es

y 
B

ur
ea

u 
In

te
rn

at
io

na
l d

es
 P

oi
ds

 e
t M

e-
su

re
s.

 R
ep

ro
du

ce
d 

w
it

h 
pe

rm
is

si
on

 o
f t

he
 B

IP
M

.

http://tycho.usno.navy.mil/time.html


71-3 MASS

international agreement, a mass of 1 kilogram. Accurate copies have been sent
to standardizing laboratories in other countries, and the masses of other bodies
can be determined by balancing them against a copy. Table 1-5 shows some
masses expressed in kilograms, ranging over about 83 orders of magnitude.

The U.S. copy of the standard kilogram is housed in a vault at NIST. It is
removed, no more than once a year, for the purpose of checking duplicate
copies that are used elsewhere. Since 1889, it has been taken to France twice for
recomparison with the primary standard.

A Second Mass Standard
The masses of atoms can be compared with one another more precisely than
they can be compared with the standard kilogram. For this reason, we have 
a second mass standard. It is the carbon-12 atom, which, by international agree-
ment, has been assigned a mass of 12 atomic mass units (u).The relation between
the two units is

1 u � 1.660 538 86 � 10�27 kg, (1-7)

with an uncertainty of �10 in the last two decimal places. Scientists can, with
reasonable precision, experimentally determine the masses of other atoms rela-
tive to the mass of carbon-12. What we presently lack is a reliable means of
extending that precision to more common units of mass, such as a kilogram.

Density
As we shall discuss further in Chapter 14, density r (lowercase Greek letter rho)
is the mass per unit volume:

(1-8)

Densities are typically listed in kilograms per cubic meter or grams per cubic
centimeter.The density of water (1.00 gram per cubic centimeter) is often used as
a comparison. Fresh snow has about 10% of that density; platinum has a density
that is about 21 times that of water.

� �
m
V

.

Table 1-5 Some Approximate Masses

Mass in 
Object Kilograms

Known universe 1 � 1053

Our galaxy 2 � 1041

Sun 2 � 1030

Moon 7 � 1022

Asteroid Eros 5 � 1015

Small mountain 1 � 1012

Ocean liner 7 � 107

Elephant 5 � 103

Grape 3 � 10�3

Speck of dust 7 � 10�10

Penicillin molecule 5 � 10�17

Uranium atom 4 � 10�25

Proton 2 � 10�27

Electron 9 � 10�31

KEY IDEA

The density of the sand rsand in a sample is the mass per unit
volume—that is, the ratio of the total mass msand of the sand
grains to the total volume Vtotal of the sample:

(1-10)

Calculations: The total volume Vtotal of a sample is

Vtotal � Vgrains � Vvoids.

Substituting for Vvoids from Eq. 1-9 and solving for Vgrains

lead to

(1-11)Vgrains �
Vtotal

1 � e
.

�sand �
msand

Vtotal
.

Sample Problem 1.02 Density and liquefaction

A heavy object can sink into the ground during an earthquake
if the shaking causes the ground to undergo liquefaction, in
which the soil grains experience little friction as they slide
over one another. The ground is then effectively quicksand.
The possibility of liquefaction in sandy ground can be pre-
dicted in terms of the void ratio e for a sample of the ground:

(1-9)

Here, Vgrains is the total volume of the sand grains in the sam-
ple and Vvoids is the total volume between the grains (in the
voids). If e exceeds a critical value of 0.80, liquefaction can
occur during an earthquake.What is the corresponding sand
density rsand? Solid silicon dioxide (the primary component
of sand) has a density of � 2.600 � 103 kg/m3.�SiO2

e �
Vvoids

Vgrains
.



Measurement in Physics Physics is based on measurement
of physical quantities. Certain physical quantities have been cho-
sen as base quantities (such as length, time, and mass); each has
been defined in terms of a standard and given a unit of measure
(such as meter, second, and kilogram). Other physical quantities
are defined in terms of the base quantities and their standards
and units.

SI Units The unit system emphasized in this book is the
International System of Units (SI). The three physical quantities
displayed in Table 1-1 are used in the early chapters. Standards,
which must be both accessible and invariable, have been estab-
lished for these base quantities by international agreement.
These standards are used in all physical measurement, for both
the base quantities and the quantities derived from them.
Scientific notation and the prefixes of Table 1-2 are used to sim-
plify measurement notation.

Changing Units Conversion of units may be performed by us-
ing chain-link conversions in which the original data are multiplied

successively by conversion factors written as unity and the units
are manipulated like algebraic quantities until only the desired
units remain.

Length The meter is defined as the distance traveled by light
during a precisely specified time interval.

Time The second is defined in terms of the oscillations of light
emitted by an atomic (cesium-133) source. Accurate time signals
are sent worldwide by radio signals keyed to atomic clocks in stan-
dardizing laboratories.

Mass The kilogram is defined in terms of a platinum–
iridium standard mass kept near Paris. For measurements on an
atomic scale, the atomic mass unit, defined in terms of the atom
carbon-12, is usually used.

Density The density r of a material is the mass per unit volume:

(1-8)� �
m
V

.

Review & Summary
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Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at http://www.wiley.com/college/halliday

Problems

Module 1-1 Measuring Things, Including Lengths
•1 Earth is approximately a sphere of radius 6.37 � 106 m.
What are (a) its circumference in kilometers, (b) its surface area in
square kilometers, and (c) its volume in cubic kilometers?

•2 A gry is an old English measure for length, defined as 1/10 of a
line, where line is another old English measure for length, defined
as 1/12 inch. A common measure for length in the publishing busi-
ness is a point, defined as 1/72 inch. What is an area of 0.50 gry2 in
points squared (points2)?

•3 The micrometer (1 mm) is often called the micron. (a) How

SSM

many microns make up 1.0 km? (b) What fraction of a centimeter
equals 1.0 mm? (c) How many microns are in 1.0 yd?

•4 Spacing in this book was generally done in units of points and
picas: 12 points � 1 pica, and 6 picas � 1 inch. If a figure was mis-
placed in the page proofs by 0.80 cm, what was the misplacement
in (a) picas and (b) points?

•5 Horses are to race over a certain English meadow
for a distance of 4.0 furlongs. What is the race distance in (a) rods
and (b) chains? (1 furlong � 201.168 m, 1 rod � 5.0292 m,
and 1 chain � 20.117 m.)

WWWSSM

Additional examples, video, and practice available at WileyPLUS

From Eq. 1-8, the total mass msand of the sand grains is the
product of the density of silicon dioxide and the total vol-
ume of the sand grains:

(1-12)

Substituting this expression into Eq. 1-10 and then substitut-
ing for Vgrains from Eq. 1-11 lead to

(1-13)�sand �
�SiO2

Vtotal

Vtotal

1 � e
�

�SiO2

1 � e
.

msand � �SiO2
Vgrains.

Substituting � 2.600 � 103 kg/m3 and the critical value
of e 0.80, we find that liquefaction occurs when the sand
density is less than

(Answer)

A building can sink several meters in such liquefaction.

�sand �
2.600 � 10 3 kg/m3

1.80
� 1.4 � 103 kg/m3.

�
�SiO2

http://www.wiley.com/college/halliday
www.flyingcircusofphysics.com
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••6 You can easily convert common units and measures electroni-
cally, but you still should be able to use a conversion table, such as
those in Appendix D. Table 1-6 is part of a conversion table for a
system of volume measures once common in Spain; a volume of 1
fanega is equivalent to 55.501 dm3 (cubic decimeters). To complete
the table, what numbers (to three significant figures) should be en-
tered in (a) the cahiz column, (b) the fanega column, (c) the cuar-
tilla column, and (d) the almude column, starting with the top
blank? Express 7.00 almudes in (e) medios, (f) cahizes, and (g) cu-
bic centimeters (cm3).

Table 1-6 Problem 6

cahiz fanega cuartilla almude medio

1 cahiz � 1 12 48 144 288
1 fanega � 1 4 12 24
1 cuartilla � 1 3 6
1 almude � 1 2
1 medio � 1

••7 Hydraulic engineers in the United States often use, as a
unit of volume of water, the acre-foot, defined as the volume of wa-
ter that will cover 1 acre of land to a depth of 1 ft. A severe thun-
derstorm dumped 2.0 in. of rain in 30 min on a town of area 26
km2.What volume of water, in acre-feet, fell on the town?

••8 Harvard Bridge, which connects MIT with its fraternities

ILW

Module 1-2 Time
•10 Until 1883, every city and town in the United States kept its
own local time. Today, travelers reset their watches only when the
time change equals 1.0 h. How far, on the average, must you travel
in degrees of longitude between the time-zone boundaries at
which your watch must be reset by 1.0 h? (Hint: Earth rotates 360°
in about 24 h.)

•11 For about 10 years after the French Revolution, the French
government attempted to base measures of time on multiples of
ten: One week consisted of 10 days, one day consisted of 10 hours,
one hour consisted of 100 minutes, and one minute consisted of 100
seconds. What are the ratios of (a) the French decimal week to the
standard week and (b) the French decimal second to the standard
second?

•12 The fastest growing plant on record is a Hesperoyucca whip-
plei that grew 3.7 m in 14 days. What was its growth rate in micro-
meters per second?

•13 Three digital clocks A, B, and C run at different rates and

3000 m
2000 km

Figure 1-5 Problem 9.

across the Charles River, has a length of 364.4 Smoots plus one
ear. The unit of one Smoot is based on the length of Oliver Reed
Smoot, Jr., class of 1962, who was carried or dragged length by
length across the bridge so that other pledge members of the
Lambda Chi Alpha fraternity could mark off (with paint) 
1-Smoot lengths along the bridge.The marks have been repainted
biannually by fraternity pledges since the initial measurement,
usually during times of traffic congestion so that the police can-
not easily interfere. (Presumably, the police were originally up-
set because the Smoot is not an SI base unit, but these days they
seem to have accepted the unit.) Figure 1-4 shows three parallel
paths, measured in Smoots (S), Willies (W), and Zeldas (Z).
What is the length of 50.0 Smoots in (a) Willies and (b) Zeldas?

Figure 1-4 Problem 8.

••9 Antarctica is roughly semicircular, with a radius of 2000 km
(Fig. 1-5). The average thickness of its ice cover is 3000 m. How
many cubic centimeters of ice does Antarctica contain? (Ignore
the curvature of Earth.)

S

W

Z

0 32

60

212

258

216

0

do not have simultaneous readings of zero. Figure 1-6 shows si-
multaneous readings on pairs of the clocks for four occasions. (At
the earliest occasion, for example, B reads 25.0 s and C reads 92.0
s.) If two events are 600 s apart on clock A, how far apart are they
on (a) clock B and (b) clock C? (c) When clock A reads 400 s, what
does clock B read? (d) When clock C reads 15.0 s, what does clock B
read? (Assume negative readings for prezero times.)

Figure 1-6 Problem 13.

•14 A lecture period (50 min) is close to 1 microcentury. (a) How
long is a microcentury in minutes? (b) Using 

,

find the percentage difference from the approximation.

•15 A fortnight is a charming English measure of time equal to
2.0 weeks (the word is a contraction of “fourteen nights”).That is a
nice amount of time in pleasant company but perhaps a painful
string of microseconds in unpleasant company. How many mi-
croseconds are in a fortnight?

•16 Time standards are now based on atomic clocks. A promis-
ing second standard is based on pulsars, which are rotating neu-
tron stars (highly compact stars consisting only of neutrons).
Some rotate at a rate that is highly stable, sending out a radio
beacon that sweeps briefly across Earth once with each rotation,
like a lighthouse beacon. Pulsar PSR 1937 � 21 is an example; it
rotates once every 1.557 806 448 872 75 � 3 ms, where the trailing
�3 indicates the uncertainty in the last decimal place (it does not
mean �3 ms). (a) How many rotations does PSR 1937 � 21 make
in 7.00 days? (b) How much time does the pulsar take to rotate ex-
actly one million times and (c) what is the associated uncertainty?

percentage difference � � actual � approximation
actual � 100

A (s)

B (s)

C (s)

312 512

29020012525.0

92.0 142



10 CHAPTER 1 MEASUREMENT

•17 Five clocks are being tested in a laboratory. Exactly at
noon, as determined by the WWV time signal, on successive days
of a week the clocks read as in the following table. Rank the five
clocks according to their relative value as good timekeepers, best
to worst. Justify your choice.

Clock Sun. Mon. Tues. Wed. Thurs. Fri. Sat.

A 12:36:40 12:36:56 12:37:12 12:37:27 12:37:44 12:37:59 12:38:14

B 11:59:59 12:00:02 11:59:57 12:00:07 12:00:02 11:59:56 12:00:03

C 15:50:45 15:51:43 15:52:41 15:53:39 15:54:37 15:55:35 15:56:33

D 12:03:59 12:02:52 12:01:45 12:00:38 11:59:31 11:58:24 11:57:17

E 12:03:59 12:02:49 12:01:54 12:01:52 12:01:32 12:01:22 12:01:12

••18 Because Earth’s rotation is gradually slowing, the length of
each day increases:The day at the end of 1.0 century is 1.0 ms longer
than the day at the start of the century. In 20 centuries, what is the
total of the daily increases in time?

•••19 Suppose that, while lying on a beach near the equator
watching the Sun set over a calm ocean, you start a stopwatch just
as the top of the Sun disappears. You then stand, elevating your
eyes by a height H � 1.70 m, and stop the watch when the top of
the Sun again disappears. If the elapsed time is t � 11.1 s, what is
the radius r of Earth?

Module 1-3 Mass
•20 The record for the largest glass bottle was set in 1992 by a
team in Millville, New Jersey—they blew a bottle with a volume of
193 U.S. fluid gallons. (a) How much short of 1.0 million cubic cen-
timeters is that? (b) If the bottle were filled with water at the
leisurely rate of 1.8 g/min, how long would the filling take? Water
has a density of 1000 kg/m3.

•21 Earth has a mass of 5.98 � 1024 kg.The average mass of the atoms
that make up Earth is 40 u. How many atoms are there in Earth?

•22 Gold, which has a density of 19.32 g/cm3, is the most ductile
metal and can be pressed into a thin leaf or drawn out into a long
fiber. (a) If a sample of gold, with a mass of 27.63 g, is pressed into
a leaf of 1.000 mm thickness, what is the area of the leaf? (b) If,
instead, the gold is drawn out into a cylindrical fiber of radius 2.500
mm, what is the length of the fiber?

•23 (a) Assuming that water has a density of exactly 1 g/cm3,
find the mass of one cubic meter of water in kilograms.
(b) Suppose that it takes 10.0 h to drain a container of 5700 m3 of
water.What is the “mass flow rate,” in kilograms per second, of wa-
ter from the container?

••24 Grains of fine California beach sand are approximately
spheres with an average radius of 50 m and are made of silicon
dioxide, which has a density of 2600 kg/m3.What mass of sand grains
would have a total surface area (the total area of all the individual
spheres) equal to the surface area of a cube 1.00 m on an edge?

••25 During heavy rain, a section of a mountainside mea-
suring 2.5 km horizontally, 0.80 km up along the slope, and 2.0 m
deep slips into a valley in a mud slide.Assume that the mud ends up
uniformly distributed over a surface area of the valley measuring
0.40 km � 0.40 km and that mud has a density of 1900 kg/m3. What
is the mass of the mud sitting above a 4.0 m2 area of the valley floor?

••26 One cubic centimeter of a typical cumulus cloud contains
50 to 500 water drops, which have a typical radius of 10 mm. For

�

SSM

SSM that range, give the lower value and the higher value, respectively,
for the following. (a) How many cubic meters of water are in a
cylindrical cumulus cloud of height 3.0 km and radius 1.0 km? (b)
How many 1-liter pop bottles would that water fill? (c) Water has
a density of 1000 kg/m3. How much mass does the water in the
cloud have?

••27 Iron has a density of 7.87 g/cm3, and the mass of an iron atom
is 9.27 � 10�26 kg. If the atoms are spherical and tightly packed, (a)
what is the volume of an iron atom and (b) what is the distance be-
tween the centers of adjacent atoms?

••28 A mole of atoms is 6.02 � 1023 atoms. To the nearest order
of magnitude, how many moles of atoms are in a large domestic
cat? The masses of a hydrogen atom, an oxygen atom, and a carbon
atom are 1.0 u, 16 u, and 12 u, respectively. (Hint: Cats are some-
times known to kill a mole.)

••29 On a spending spree in Malaysia, you buy an ox with
a weight of 28.9 piculs in the local unit of weights: 1 picul �
100 gins, 1 gin � 16 tahils, 1 tahil � 10 chees, and 1 chee �
10 hoons. The weight of 1 hoon corresponds to a mass of 0.3779 g.
When you arrange to ship the ox home to your astonished family,
how much mass in kilograms must you declare on the shipping
manifest? (Hint: Set up multiple chain-link conversions.)

••30 Water is poured into a container that has a small leak.
The mass m of the water is given as a function of time t by
m � 5.00t0.8 � 3.00t � 20.00, with t  0, m in grams, and t in sec-
onds. (a) At what time is the water mass greatest, and (b) what is
that greatest mass? In kilograms per minute, what is the rate of
mass change at (c) t � 2.00 s and (d) t � 5.00 s?

•••31 A vertical container with base area measuring 14.0 cm by
17.0 cm is being filled with identical pieces of candy, each with a
volume of 50.0 mm3 and a mass of 0.0200 g.Assume that the volume
of the empty spaces between the candies is negligible. If the height
of the candies in the container increases at the rate of 0.250 cm/s, at
what rate (kilograms per minute) does the mass of the candies in
the container increase?

Additional Problems
32 In the United States, a doll house has the scale of 1�12 of a
real house (that is, each length of the doll house is that of the real
house) and a miniature house (a doll house to fit within a doll
house) has the scale of 1�144 of a real house. Suppose a real house
(Fig. 1-7) has a front length of 20 m, a depth of 12 m, a height of 6.0 m,
and a standard sloped roof (vertical triangular faces on the ends)
of height 3.0 m. In cubic meters, what are the volumes of the corre-
sponding (a) doll house and (b) miniature house?

Figure 1-7 Problem 32.

6.0 m

12 m

20 m

3.0 m

1
12
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33 A ton is a measure of volume frequently used in ship-
ping, but that use requires some care because there are at
least three types of tons: A displacement ton is equal to 7 barrels
bulk, a freight ton is equal to 8 barrels bulk, and a register ton is
equal to 20 barrels bulk. A barrel bulk is another measure of vol-
ume: 1 barrel bulk � 0.1415 m3. Suppose you spot a shipping order
for “73 tons” of M&M candies, and you are certain that the client
who sent the order intended “ton” to refer to volume (instead of
weight or mass, as discussed in Chapter 5). If the client actually
meant displacement tons, how many extra U.S. bushels of the can-
dies will you erroneously ship if you interpret the order as (a) 73
freight tons and (b) 73 register tons? (1 m3 � 28.378 U.S.
bushels.)

34 Two types of barrel units were in use in the 1920s in the
United States.The apple barrel had a legally set volume of 7056 cu-
bic inches; the cranberry barrel, 5826 cubic inches. If a merchant
sells 20 cranberry barrels of goods to a customer who thinks he is
receiving apple barrels, what is the discrepancy in the shipment
volume in liters?

35 An old English children’s rhyme states, “Little Miss Muffet
sat on a tuffet, eating her curds and whey, when along came a spi-
der who sat down beside her. . . .” The spider sat down not because
of the curds and whey but because Miss Muffet had a stash of 11
tuffets of dried flies. The volume measure of a tuffet is given by
1 tuffet � 2 pecks � 0.50 Imperial bushel, where 1 Imperial bushel
� 36.3687 liters (L). What was Miss Muffet’s stash in (a) pecks,
(b) Imperial bushels, and (c) liters?

36 Table 1-7 shows some old measures of liquid volume. To
complete the table, what numbers (to three significant figures)
should be entered in (a) the wey column, (b) the chaldron column,
(c) the bag column, (d) the pottle column, and (e) the gill column,
starting from the top down? (f) The volume of 1 bag is equal to
0.1091 m3. If an old story has a witch cooking up some vile liquid
in a cauldron of volume 1.5 chaldrons, what is the volume in cubic
meters?

Table 1-7 Problem 36

wey chaldron bag pottle gill

1 wey � 1 10/9 40/3 640 120 240
1 chaldron �
1 bag �
1 pottle �
1 gill �

37 A typical sugar cube has an edge length of 1 cm. If you had a
cubical box that contained a mole of sugar cubes, what would its
edge length be? (One mole � 6.02 � 1023 units.)

38 An old manuscript reveals that a landowner in the time
of King Arthur held 3.00 acres of plowed land plus a live-
stock area of 25.0 perches by 4.00 perches. What was the total
area in (a) the old unit of roods and (b) the more modern unit of
square meters? Here, 1 acre is an area of 40 perches by 4 perches,
1 rood is an area of 40 perches by 1 perch, and 1 perch is the
length 16.5 ft.

39 A tourist purchases a car in England and ships it home to
the United States.The car sticker advertised that the car’s fuel con-
sumption was at the rate of 40 miles per gallon on the open road.

SSM

SSM The tourist does not realize that the U.K. gallon differs from the
U.S. gallon:

1 U.K. gallon � 4.546 090 0 liters
1 U.S. gallon � 3.785 411 8 liters.

For a trip of 750 miles (in the United States), how many gallons of
fuel does (a) the mistaken tourist believe she needs and (b) the car
actually require?

40 Using conversions and data in the chapter, determine
the number of hydrogen atoms required to obtain 1.0 kg of
hydrogen.A hydrogen atom has a mass of 1.0 u.

41 A cord is a volume of cut wood equal to a stack 8 ft
long, 4 ft wide, and 4 ft high. How many cords are in 1.0 m3?

42 One molecule of water (H2O) contains two atoms of hydrogen
and one atom of oxygen.A hydrogen atom has a mass of 1.0 u and an
atom of oxygen has a mass of 16 u, approximately. (a) What is the
mass in kilograms of one molecule of water? (b) How many mole-
cules of water are in the world’s oceans, which have an estimated total
mass of 1.4 � 1021 kg?

43 A person on a diet might lose 2.3 kg per week. Express the
mass loss rate in milligrams per second, as if the dieter could sense
the second-by-second loss.

44 What mass of water fell on the town in Problem 7? Water has
a density of 1.0 � 103 kg/m3.

45 (a) A unit of time sometimes used in microscopic physics is
the shake. One shake equals 10�8 s. Are there more shakes in a
second than there are seconds in a year? (b) Humans have ex-
isted for about 106 years, whereas the universe is about 1010 years
old. If the age of the universe is defined as 1 “universe day,”
where a universe day consists of “universe seconds” as a normal
day consists of normal seconds, how many universe seconds have
humans existed?

46 A unit of area often used in measuring land areas is the hectare,
defined as 104 m2. An open-pit coal mine consumes 75 hectares of
land, down to a depth of 26 m, each year. What volume of earth, in
cubic kilometers, is removed in this time?

47 An astronomical unit (AU) is the average distance
between Earth and the Sun, approximately 1.50 108 km. The
speed of light is about 3.0 � 108 m/s. Express the speed of light in
astronomical units per minute.

48 The common Eastern mole, a mammal, typically has a mass of
75 g, which corresponds to about 7.5 moles of atoms. (A mole of
atoms is 6.02 � 1023 atoms.) In atomic mass units (u), what is the
average mass of the atoms in the common Eastern mole?

49 A traditional unit of length in Japan is the ken (1 ken �
1.97 m). What are the ratios of (a) square kens to square meters
and (b) cubic kens to cubic meters? What is the volume of a cylin-
drical water tank of height 5.50 kens and radius 3.00 kens in (c) cu-
bic kens and (d) cubic meters?

50 You receive orders to sail due east for 24.5 mi to put your sal-
vage ship directly over a sunken pirate ship. However, when your
divers probe the ocean floor at that location and find no evidence of
a ship, you radio back to your source of information, only to discover
that the sailing distance was supposed to be 24.5 nautical miles, not
regular miles. Use the Length table in Appendix D to calculate how
far horizontally you are from the pirate ship in kilometers.

�
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51 The cubit is an ancient unit of length based on the distance
between the elbow and the tip of the middle finger of the mea-
surer. Assume that the distance ranged from 43 to 53 cm, and
suppose that ancient drawings indicate that a cylindrical pillar
was to have a length of 9 cubits and a diameter of 2 cubits. For
the stated range, what are the lower value and the upper value,
respectively, for (a) the cylinder’s length in meters, (b) the cylin-
der’s length in millimeters, and (c) the cylinder’s volume in cubic
meters?

52 As a contrast between the old and the modern and between
the large and the small, consider the following: In old rural
England 1 hide (between 100 and 120 acres) was the area of land
needed to sustain one family with a single plough for one year. (An
area of 1 acre is equal to 4047 m2.) Also, 1 wapentake was the area
of land needed by 100 such families. In quantum physics, the
cross-sectional area of a nucleus (defined in terms of the chance of
a particle hitting and being absorbed by it) is measured in units of
barns, where 1 barn is 1 � 10�28 m2. (In nuclear physics jargon, if a
nucleus is “large,” then shooting a particle at it is like shooting a
bullet at a barn door, which can hardly be missed.) What is the
ratio of 25 wapentakes to 11 barns?

53 An astronomical unit (AU) is equal to the average
distance from Earth to the Sun, about 92.9 106 mi. A parsec
(pc) is the distance at which a length of 1 AU would subtend an
angle of exactly 1 second of
arc (Fig. 1-8). A light-year (ly)
is the distance that light, trav-
eling through a vacuum with a
speed of 186 000 mi/s, would
cover in 1.0 year. Express the
Earth – Sun distance in (a)
parsecs and (b) light-years.

54 The description for a certain brand of house paint claims a cov-
erage of 460 ft2/gal. (a) Express this quantity in square meters per
liter. (b) Express this quantity in an SI unit (see Appendices A and
D). (c) What is the inverse of the original quantity, and (d) what is its
physical significance?

55 Strangely, the wine for a large wedding reception is to be
served in a stunning cut-glass receptacle with the interior dimen-
sions of 40 cm � 40 cm � 30 cm (height). The receptacle is to be
initially filled to the top. The wine can be purchased in bottles of
the sizes given in the following table. Purchasing a larger bottle in-
stead of multiple smaller bottles decreases the overall cost of the
wine. To minimize the cost, (a) which bottle sizes should be pur-
chased and how many of each should be purchased and, once the
receptacle is filled, how much wine is left over in terms of (b) stan-
dard bottles and (c) liters?

1 standard bottle

1 magnum � 2 standard bottles

1 jeroboam � 4 standard bottles

1 rehoboam � 6 standard bottles

1 methuselah � 8 standard bottles

1 salmanazar � 12 standard bottles

1 balthazar � 16 standard bottles � 11.356 L

1 nebuchadnezzar � 20 standard bottles

�
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56 The corn–hog ratio is a financial term used in the pig market
and presumably is related to the cost of feeding a pig until it is
large enough for market. It is defined as the ratio of the market
price of a pig with a mass of 3.108 slugs to the market price of a
U.S. bushel of corn. (The word “slug” is derived from an old
German word that means “to hit”; we have the same meaning for
“slug” as a verb in modern English.) A U.S. bushel is equal to
35.238 L. If the corn–hog ratio is listed as 5.7 on the market ex-
change, what is it in the metric units of

(Hint: See the Mass table in Appendix D.)

57 You are to fix dinners for 400 people at a convention of
Mexican food fans. Your recipe calls for 2 jalapeño peppers per
serving (one serving per person). However, you have only ha-
banero peppers on hand. The spiciness of peppers is measured in
terms of the scoville heat unit (SHU). On average, one jalapeño
pepper has a spiciness of 4000 SHU and one habanero pepper has
a spiciness of 300 000 SHU. To get the desired spiciness, how many
habanero peppers should you substitute for the jalapeño peppers
in the recipe for the 400 dinners?

58 A standard interior staircase has steps each with a rise
(height) of 19 cm and a run (horizontal depth) of 23 cm. Research
suggests that the stairs would be safer for descent if the run were,
instead, 28 cm. For a particular staircase of total height 4.57 m, how
much farther into the room would the staircase extend if this
change in run were made?

59 In purchasing food for a political rally, you erroneously order
shucked medium-size Pacific oysters (which come 8 to 12 per U.S.
pint) instead of shucked medium-size Atlantic oysters (which
come 26 to 38 per U.S. pint). The filled oyster container shipped to
you has the interior measure of 1.0 m � 12 cm � 20 cm, and a U.S.
pint is equivalent to 0.4732 liter. By how many oysters is the order
short of your anticipated count?

60 An old English cookbook carries this recipe for cream of net-
tle soup: “Boil stock of the following amount: 1 breakfastcup plus
1 teacup plus 6 tablespoons plus 1 dessertspoon. Using gloves,
separate nettle tops until you have 0.5 quart; add the tops to the
boiling stock. Add 1 tablespoon of cooked rice and 1 saltspoon of
salt. Simmer for 15 min.” The following table gives some of the
conversions among old (premetric) British measures and among
common (still premetric) U.S. measures. (These measures just
scream for metrication.) For liquid measures, 1 British teaspoon �
1 U.S. teaspoon. For dry measures, 1 British teaspoon � 2 U.S. tea-
spoons and 1 British quart � 1 U.S. quart. In U.S. measures, how
much (a) stock, (b) nettle tops, (c) rice, and (d) salt are required in
the recipe?

Old British Measures U.S. Measures

teaspoon � 2 saltspoons tablespoon � 3 teaspoons
dessertspoon � 2 teaspoons half cup � 8 tablespoons
tablespoon � 2 dessertspoons cup � 2 half cups
teacup � 8 tablespoons
breakfastcup � 2 teacups

price of 1 kilogram of pig
price of 1 liter of corn

 ?

An angle of
exactly 1 second

1 pc

1 AU
1 pc

Figure 1-8 Problem 53.



C H A P T E R  2

Motion Along a Straight Line

2-1 POSITION, DISPLACEMENT, AND AVERAGE VELOCITY

After reading this module, you should be able to … 

2.01 Identify that if all parts of an object move in the same di-
rection and at the same rate, we can treat the object as if it
were a (point-like) particle. (This chapter is about the mo-
tion of such objects.)

2.02 Identify that the position of a particle is its location as
read on a scaled axis, such as an x axis.

2.03 Apply the relationship between a particle’s
displacement and its initial and final positions.

2.04 Apply the relationship between a particle’s average
velocity, its displacement, and the time interval for that
displacement.

2.05 Apply the relationship between a particle’s average
speed, the total distance it moves, and the time interval for
the motion.

2.06 Given a graph of a particle’s position versus time,
determine the average velocity between any two particular
times.

● The position x of a particle on an x axis locates the particle
with respect to the origin, or zero point, of the axis.

● The position is either positive or negative, according 
to which side of the origin the particle is on, or zero if 
the particle is at the origin. The positive direction on 
an axis is the direction of increasing positive numbers; 
the opposite direction is the negative direction on 
the axis.    

● The displacement �x of a particle is the change in its
position:

● Displacement is a vector quantity. It is positive if the
particle has moved in the positive direction of the x axis
and negative if the particle has moved in the negative
direction.

�x � x2 � x1.

● When a particle has moved from position x1 to position x2

during a time interval �t � t2 � t1, its average velocity during
that interval is

.

● The algebraic sign of vavg indicates the direction of motion
(vavg is a vector quantity). Average velocity does not depend
on the actual distance a particle moves, but instead depends
on its original and final positions. 

● On a graph of x versus t, the average velocity for a time in-
terval �t is the slope of the straight line connecting the points
on the curve that represent the two ends of the interval. 

● The average speed savg of a particle during a time interval �t
depends on the total distance the particle moves in that time
interval:

savg �
total distance

�t
.

vavg �
�x
�t

�
x2 � x1

t2 � t1

What Is Physics?
One purpose of physics is to study the motion of objects—how fast they move, for
example, and how far they move in a given amount of time. NASCAR engineers
are fanatical about this aspect of physics as they determine the performance of
their cars before and during a race. Geologists use this physics to measure
tectonic-plate motion as they attempt to predict earthquakes. Medical
researchers need this physics to map the blood flow through a patient when
diagnosing a partially closed artery, and motorists use it to determine how they
might slow sufficiently when their radar detector sounds a warning. There are
countless other examples. In this chapter, we study the basic physics of motion
where the object (race car, tectonic plate, blood cell, or any other object) moves
along a single axis. Such motion is called one-dimensional motion.

Key Ideas

Learning Objectives
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Motion
The world, and everything in it, moves. Even seemingly stationary things, such as a
roadway, move with Earth’s rotation, Earth’s orbit around the Sun, the Sun’s orbit
around the center of the Milky Way galaxy, and that galaxy’s migration relative to
other galaxies.The classification and comparison of motions (called kinematics) is
often challenging.What exactly do you measure, and how do you compare?

Before we attempt an answer, we shall examine some general properties of
motion that is restricted in three ways.

1. The motion is along a straight line only.The line may be vertical, horizontal, or
slanted, but it must be straight.

2. Forces (pushes and pulls) cause motion but will not be discussed until 
Chapter 5. In this chapter we discuss only the motion itself and changes in the
motion. Does the moving object speed up, slow down, stop, or reverse
direction? If the motion does change, how is time involved in the change?

3. The moving object is either a particle (by which we mean a point-like object
such as an electron) or an object that moves like a particle (such that every
portion moves in the same direction and at the same rate). A stiff pig slipping
down a straight playground slide might be considered to be moving like a par-
ticle; however, a tumbling tumbleweed would not.

Position and Displacement
To locate an object means to find its position relative to some reference point, of-
ten the origin (or zero point) of an axis such as the x axis in Fig. 2-1. The positive
direction of the axis is in the direction of increasing numbers (coordinates), which
is to the right in Fig. 2-1.The opposite is the negative direction.

For example, a particle might be located at x � 5 m, which means it is 5 m in
the positive direction from the origin. If it were at x � �5 m, it would be just as
far from the origin but in the opposite direction. On the axis, a coordinate of
�5 m is less than a coordinate of �1 m, and both coordinates are less than a
coordinate of �5 m. A plus sign for a coordinate need not be shown, but a minus
sign must always be shown.

A change from position x1 to position x2 is called a displacement �x, where

�x � x2 � x1. (2-1)

(The symbol �, the Greek uppercase delta, represents a change in a quantity,
and it means the final value of that quantity minus the initial value.) When
numbers are inserted for the position values x1 and x2 in Eq. 2-1, a displacement
in the positive direction (to the right in Fig. 2-1) always comes out positive, and
a displacement in the opposite direction (left in the figure) always comes out
negative. For example, if the particle moves from x1 � 5 m to x2 � 12 m, then
the displacement is �x � (12 m) � (5 m) � �7 m. The positive result indicates
that the motion is in the positive direction. If, instead, the particle moves from
x1 � 5 m to x2 � 1 m, then �x � (1 m) � (5 m) � �4 m. The negative result in-
dicates that the motion is in the negative direction.

The actual number of meters covered for a trip is irrelevant; displacement in-
volves only the original and final positions. For example, if the particle moves
from x � 5 m out to x � 200 m and then back to x � 5 m, the displacement from
start to finish is �x � (5 m) � (5 m) � 0.

Signs. A plus sign for a displacement need not be shown, but a minus sign
must always be shown. If we ignore the sign (and thus the direction) of a displace-
ment, we are left with the magnitude (or absolute value) of the displacement. For
example, a displacement of �x � �4 m has a magnitude of 4 m.

14 CHAPTER 2 MOTION ALONG A STRAIGHT LINE

Figure 2-1 Position is determined on an
axis that is marked in units of length (here
meters) and that extends indefinitely in
opposite directions. The axis name, here x,
is always on the positive side of the origin.

–3 0

Origin

–2 –1 1 2 3

Negative direction

Positive direction

x (m)



Displacement is an example of a vector quantity, which is a quantity that has
both a direction and a magnitude.We explore vectors more fully in Chapter 3, but
here all we need is the idea that displacement has two features: (1) Its magnitude
is the distance (such as the number of meters) between the original and final po-
sitions. (2) Its direction, from an original position to a final position, can be repre-
sented by a plus sign or a minus sign if the motion is along a single axis.

Here is the first of many checkpoints where you can check your understanding
with a bit of reasoning. The answers are in the back of the book.

152-1 POSITION, DISPLACEMENT, AND AVERAGE VELOCITY

Checkpoint 1
Here are three pairs of initial and final positions, respectively, along an x axis.Which
pairs give a negative displacement: (a) �3 m, �5 m; (b) �3 m, �7 m; (c) 7 m, �3 m?

Average Velocity and Average Speed
A compact way to describe position is with a graph of position x plotted as a func-
tion of time t—a graph of x(t). (The notation x(t) represents a function x of t, not
the product x times t.) As a simple example, Fig. 2-2 shows the position function
x(t) for a stationary armadillo (which we treat as a particle) over a 7 s time inter-
val.The animal’s position stays at x � �2 m.

Figure 2-3 is more interesting, because it involves motion. The armadillo is
apparently first noticed at t � 0 when it is at the position x � �5 m. It moves

Figure 2-2 The graph of
x(t) for an armadillo that
is stationary at x � �2 m.
The value of x is �2 m
for all times t.

x (m)

t (s)
1 2 3 4

+1

–1
–1

x(t)

0

This is a graph
of position x
versus time t
for a stationary
object.

Same position
for any time.

Figure 2-3 The graph of x(t) for a moving armadillo. The path associated with the graph is also shown, at three times.
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It is at position x = –5 m
when time t = 0 s.
Those data are plotted here.

This is a graph
of position x
versus time t
for a moving
object.

0–5 2
x (m)

0 s

0–5 2
x (m)

3 s 

At x = 0 m when t = 3 s.
Plotted here.

At x = 2 m when t = 4 s.
Plotted here.
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Figure 2-4 Calculation of the
average velocity between t � 1 s
and t � 4 s as the slope of the line
that connects the points on the
x(t) curve representing those times.
The swirling icon indicates that a
figure is available in WileyPLUS
as an animation with voiceover.

x (m)

t (s)

x(t)

1 2 3 4

4

3

2

1

–1

–2

–3

–4

–5

vavg = slope of this line

0

This horizontal distance is how long
it took, start to end:
Δt = 4 s – 1 s = 3 sStart of interval

This vertical distance is how far
it moved, start to end:
Δx = 2 m – (–4 m) = 6 m

End of interval
Δx__
Δt

rise___
run

= =

This is a graph
of position x
versus time t.

To find average velocity,
first draw a straight line,
start to end, and then
find the slope of the
line.

A

toward x � 0, passes through that point at t � 3 s, and then moves on to increas-
ingly larger positive values of x. Figure 2-3 also depicts the straight-line motion of
the armadillo (at three times) and is something like what you would see. The
graph in Fig. 2-3 is more abstract, but it reveals how fast the armadillo moves.

Actually, several quantities are associated with the phrase “how fast.” One of
them is the average velocity vavg, which is the ratio of the displacement �x that
occurs during a particular time interval �t to that interval:

(2-2)

The notation means that the position is x1 at time t1 and then x2 at time t2. A com-
mon unit for vavg is the meter per second (m/s). You may see other units in the
problems, but they are always in the form of length/time.

Graphs. On a graph of x versus t, vavg is the slope of the straight line that
connects two particular points on the x(t) curve: one is the point that corresponds
to x2 and t2, and the other is the point that corresponds to x1 and t1. Like displace-
ment, vavg has both magnitude and direction (it is another vector quantity). Its
magnitude is the magnitude of the line’s slope. A positive vavg (and slope) tells us
that the line slants upward to the right; a negative vavg (and slope) tells us that the
line slants downward to the right. The average velocity vavg always has the same
sign as the displacement �x because �t in Eq. 2-2 is always positive.

Figure 2-4 shows how to find vavg in Fig. 2-3 for the time interval t � 1 s to t � 4 s.
We draw the straight line that connects the point on the position curve at the begin-
ning of the interval and the point on the curve at the end of the interval.Then we find
the slope �x/�t of the straight line. For the given time interval, the average velocity is

Average speed savg is a different way of describing “how fast” a particle
moves. Whereas the average velocity involves the particle’s displacement �x, the
average speed involves the total distance covered (for example, the number of
meters moved), independent of direction; that is,

(2-3)

Because average speed does not include direction, it lacks any algebraic sign.
Sometimes savg is the same (except for the absence of a sign) as vavg. However, the
two can be quite different.

savg �
total distance

�t
.

vavg �
6 m
3 s

� 2 m/s.

vavg �
�x
�t

�
x2 � x1

t2 � t1
.
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Calculation: Here we find

(Answer)

To find vavg graphically, first we graph the function x(t) as
shown in Fig. 2-5, where the beginning and arrival points on
the graph are the origin and the point labeled as “Station.”Your
average velocity is the slope of the straight line connecting
those points; that is, vavg is the ratio of the rise (�x � 10.4 km)
to the run (�t � 0.62 h), which gives us vavg � 16.8 km/h.

(d) Suppose that to pump the gasoline, pay for it, and walk
back to the truck takes you another 45 min. What is your
average speed from the beginning of your drive to your
return to the truck with the gasoline?

KEY IDEA

Your average speed is the ratio of the total distance you
move to the total time interval you take to make that move.

Calculation: The total distance is 8.4 km � 2.0 km � 2.0
km � 12.4 km. The total time interval is 0.12 h � 0.50 h �
0.75 h � 1.37 h.Thus, Eq. 2-3 gives us

(Answer)savg �
12.4 km
1.37 h

� 9.1 km/h.

� 16.8 km/h � 17 km/h.

vavg �
�x
�t

�
10.4 km
0.62 h

Sample Problem 2.01 Average velocity, beat-up pickup truck

You drive a beat-up pickup truck along a straight road for
8.4 km at 70 km/h, at which point the truck runs out of gaso-
line and stops. Over the next 30 min, you walk another
2.0 km farther along the road to a gasoline station.

(a) What is your overall displacement from the beginning
of your drive to your arrival at the station?

KEY IDEA

Assume, for convenience, that you move in the positive di-
rection of an x axis, from a first position of x1 � 0 to a second
position of x2 at the station. That second position must be at 
x2 � 8.4 km � 2.0 km � 10.4 km. Then your displacement �x
along the x axis is the second position minus the first position.

Calculation: From Eq. 2-1, we have

�x � x2 � x1 � 10.4 km � 0 � 10.4 km. (Answer)

Thus, your overall displacement is 10.4 km in the positive
direction of the x axis.

(b) What is the time interval �t from the beginning of your
drive to your arrival at the station?

KEY IDEA

We already know the walking time interval �twlk (� 0.50 h),
but we lack the driving time interval �tdr. However, we
know that for the drive the displacement �xdr is 8.4 km and
the average velocity vavg,dr is 70 km/h. Thus, this average
velocity is the ratio of the displacement for the drive to the
time interval for the drive.

Calculations: We first write

Rearranging and substituting data then give us

So,

(Answer)

(c) What is your average velocity vavg from the beginning of
your drive to your arrival at the station? Find it both numer-
ically and graphically.

KEY IDEA

From Eq. 2-2 we know that vavg for the entire trip is the ratio
of the displacement of 10.4 km for the entire trip to the time
interval of 0.62 h for the entire trip.

� 0.12 h � 0.50 h � 0.62 h. 

�t � �tdr � �twlk

�tdr �
�xdr

vavg,dr
�

8.4 km
70 km/h

� 0.12 h.

vavg,dr �
�xdr

�tdr
.

Additional examples, video, and practice available at WileyPLUS

Figure 2-5 The lines marked “Driving” and “Walking” are the
position–time plots for the driving and walking stages. (The plot
for the walking stage assumes a constant rate of walking.) The
slope of the straight line joining the origin and the point labeled
“Station” is the average velocity for the trip, from the beginning
to the station.
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Instantaneous Velocity and Speed
You have now seen two ways to describe how fast something moves: average
velocity and average speed, both of which are measured over a time interval �t.
However, the phrase “how fast” more commonly refers to how fast a particle is
moving at a given instant—its instantaneous velocity (or simply velocity) v.

The velocity at any instant is obtained from the average velocity by shrinking
the time interval �t closer and closer to 0. As �t dwindles, the average velocity
approaches a limiting value, which is the velocity at that instant:

(2-4)

Note that v is the rate at which  position x is changing with time at a given instant;
that is, v is the derivative of x with respect to t. Also note that v at any instant is
the slope of the position–time curve at the point representing that instant.
Velocity is another vector quantity and thus has an associated direction.

Speed is the magnitude of velocity; that is, speed is velocity that has been
stripped of any indication of direction, either in words or via an algebraic sign.
(Caution: Speed and average speed can be quite different.) A velocity of �5 m/s
and one of �5 m/s both have an associated speed of 5 m/s. The speedometer in a
car measures speed, not velocity (it cannot determine the direction).

v � lim
� t : 0

�x
�t

�
dx
dt

.

2-2 INSTANTANEOUS VELOCITY AND SPEED 

After reading this module, you should be able to . . .

2.07 Given a particle’s position as a function of time, 
calculate the instantaneous velocity for any particular time.

2.08 Given a graph of a particle’s position versus time, deter-
mine the instantaneous velocity for any particular time. 

2.09 Identify speed as the magnitude of the instantaneous
velocity. 

● The instantaneous velocity (or simply velocity) v of a moving
particle is 

where �x � x2 � x1 and �t � t2 � t1.

v � lim
� t : 0

�x
�t

�
dx
dt

,

● The instantaneous velocity (at a particular time) may be
found as the slope (at that particular time) of the graph of x
versus t.

● Speed is the magnitude of instantaneous velocity.

Checkpoint 2
The following equations give the position x(t) of a particle in four situations (in each
equation, x is in meters, t is in seconds, and t � 0): (1) x � 3t � 2; (2) x � �4t2 � 2;
(3) x � 2/t2; and (4) x � �2. (a) In which situation is the velocity v of the particle con-
stant? (b) In which is v in the negative x direction?

Calculations: The slope of x(t), and so also the velocity, is
zero in the intervals from 0 to 1 s and from 9 s on, so then
the cab is stationary. During the interval bc, the slope is con-
stant and nonzero, so then the cab moves with constant ve-
locity.We calculate the slope of x(t) then as

(2-5)
�x
�t

� v �
24 m � 4.0 m
8.0 s � 3.0 s

� �4.0 m/s.

Sample Problem 2.02 Velocity and slope of x versus t, elevator cab

Figure 2-6a is an x(t) plot for an elevator cab that is initially
stationary, then moves upward (which we take to be the pos-
itive direction of x), and then stops. Plot v(t).

KEY IDEA

We can find the velocity at any time from the slope of the
x(t) curve at that time.

Learning Objectives

Key Ideas
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Figure 2-6 (a) The x(t) curve for an elevator cab
that moves upward along an x axis. (b) The v(t)
curve for the cab. Note that it is the derivative
of the x(t) curve (v � dx/dt). (c) The a(t) curve
for the cab. It is the derivative of the v(t) curve
(a � dv/dt). The stick figures along the bottom
suggest how a passenger’s body might feel dur-
ing the accelerations.

Additional examples, video, and practice available at WileyPLUS

The plus sign indicates that the cab is moving in the posi-
tive x direction. These intervals (where v � 0 and v �
4 m/s) are plotted in Fig. 2-6b. In addition, as the cab ini-
tially begins to move and then later slows to a stop,
v varies as indicated in the intervals 1 s to 3 s and 8 s to 9 s.
Thus, Fig. 2-6b is the required plot. (Figure 2-6c is consid-
ered in Module 2-3.)

Given a v(t) graph such as Fig. 2-6b, we could “work
backward” to produce the shape of the associated x(t) graph
(Fig. 2-6a). However, we would not know the actual values
for x at various times, because the v(t) graph indicates
only changes in x. To find such a change in x during any in-
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terval, we must, in the language of calculus, calculate the
area “under the curve” on the v(t) graph for that interval.
For example, during the interval 3 s to 8 s in which the cab
has a velocity of 4.0 m/s, the change in x is

�x � (4.0 m/s)(8.0 s � 3.0 s) � �20 m. (2-6)

(This area is positive because the v(t) curve is above the
t axis.) Figure 2-6a shows that x does indeed increase by
20 m in that interval. However, Fig. 2-6b does not tell us the
values of x at the beginning and end of the interval. For that,
we need additional information, such as the value of x at
some instant.



Acceleration
When a particle’s velocity changes, the particle is said to undergo acceleration (or
to accelerate). For motion along an axis, the average acceleration aavg over a time
interval �t is

(2-7)

where the particle has velocity v1 at time t1 and then velocity v2 at time t2. The
instantaneous acceleration (or simply acceleration) is

(2-8)

In words, the acceleration of a particle at any instant is the rate at which its velocity
is changing at that instant. Graphically, the acceleration at any point is the slope of
the curve of v(t) at that point.We can combine Eq. 2-8 with Eq. 2-4 to write

(2-9)

In words, the acceleration of a particle at any instant is the second derivative of
its position x(t) with respect to time.

A common unit of acceleration is the meter per second per second: m/(s � s)
or m/s2. Other units are in the form of length/(time � time) or length/time2.
Acceleration has both magnitude and direction (it is yet another vector quan-
tity). Its algebraic sign represents its direction on an axis just as for displacement
and velocity; that is, acceleration with a positive value is in the positive direction
of an axis, and acceleration with a negative value is in the negative direction.

Figure 2-6 gives plots of the position, velocity, and acceleration of an ele-
vator moving up a shaft. Compare the a(t) curve with the v(t) curve — each
point on the a(t) curve shows the derivative (slope) of the v(t) curve at the
corresponding time. When v is constant (at either 0 or 4 m/s), the derivative is
zero and so also is the acceleration. When the cab first begins to move, the v(t)

a �
dv
dt

�
d
dt �

dx
dt � �

d 2x
dt 2 .

a �
dv
dt

.

aavg �
v2 � v1

t2 � t1
�

�v
�t

,
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2-3 ACCELERATION
Learning Objectives

2.12 Given a graph of a particle’s velocity versus time, deter-
mine the instantaneous acceleration for any particular time
and the average acceleration between any two particular
times.

● Average acceleration is the ratio of a change in velocity �v
to the time interval �t in which the change occurs:

The algebraic sign indicates the direction of aavg.

aavg �
�v
�t

.

● Instantaneous acceleration (or simply acceleration) a is the
first time derivative of velocity v(t) and the second time deriv-
ative of position x(t):

.

● On a graph of v versus t, the acceleration a at any time t is
the slope of the curve at the point that represents t.

a �
dv
dt

�
d2x
dt2

After reading this module, you should be able to . . . 

2.10 Apply the relationship between a particle’s average 
acceleration, its change in velocity, and the time interval
for that change.

2.11 Given a particle’s velocity as a function of time, calcu-
late the instantaneous acceleration for any particular time.

Key Ideas



curve has a positive derivative (the slope is positive), which means that a(t) is
positive. When the cab slows to a stop, the derivative and slope of the v(t)
curve are negative; that is, a(t) is negative.

Next compare the slopes of the v(t) curve during the two acceleration peri-
ods. The slope associated with the cab’s slowing down (commonly called “decel-
eration”) is steeper because the cab stops in half the time it took to get up to
speed. The steeper slope means that the magnitude of the deceleration is larger
than that of the acceleration, as indicated in Fig. 2-6c.

Sensations. The sensations you would feel while riding in the cab of 
Fig. 2-6 are indicated by the sketched figures at the bottom. When the cab first
accelerates, you feel as though you are pressed downward; when later the cab is
braked to a stop, you seem to be stretched upward. In between, you feel nothing
special. In other words, your body reacts to accelerations (it is an accelerometer)
but not to velocities (it is not a speedometer). When you are in a car traveling at
90 km/h or an airplane traveling at 900 km/h, you have no bodily awareness of
the motion. However, if the car or plane quickly changes velocity, you may be-
come keenly aware of the change, perhaps even frightened by it. Part of the thrill
of an amusement park ride is due to the quick changes of velocity that you un-
dergo (you pay for the accelerations, not for the speed).A more extreme example
is shown in the photographs of Fig. 2-7, which were taken while a rocket sled was
rapidly accelerated along a track and then rapidly braked to a stop.

g Units. Large accelerations are sometimes expressed in terms of g units, with

1g � 9.8 m/s2 (g unit). (2-10)

(As we shall discuss in Module 2-5, g is the magnitude of the acceleration of a
falling object near Earth’s surface.) On a roller coaster, you may experience brief
accelerations up to 3g, which is (3)(9.8 m/s2), or about 29 m/s2, more than enough
to justify the cost of the ride.

Signs. In common language, the sign of an acceleration has a nonscientific
meaning: positive acceleration means that the speed of an object is increasing, and
negative acceleration means that the speed is decreasing (the object is decelerat-
ing). In this book, however, the sign of an acceleration indicates a direction, not
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Courtesy U.S. Air Force

Figure 2-7
Colonel J. P. Stapp in
a rocket sled as it is
brought up to high
speed (acceleration
out of the page) and
then very rapidly
braked (acceleration
into the page).



whether an object’s speed is increasing or decreasing. For example, if a car with an
initial velocity v � �25 m/s is braked to a stop in 5.0 s, then aavg � �5.0 m/s2. The
acceleration is positive, but the car’s speed has decreased. The reason is the differ-
ence in signs: the direction of the acceleration is opposite that of the velocity.

Here then is the proper way to interpret the signs:
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If the signs of the velocity and acceleration of a particle are the same, the speed 
of the particle increases. If the signs are opposite, the speed decreases.

Checkpoint 3
A wombat moves along an x axis.What is the sign of its acceleration if it is moving
(a) in the positive direction with increasing speed, (b) in the positive direction with
decreasing speed, (c) in the negative direction with increasing speed, and (d) in the
negative direction with decreasing speed?

Reasoning: We need to examine the expressions for x(t),
v(t), and a(t).

At t � 0, the particle is at x(0) � �4 m and is moving
with a velocity of v(0) � �27 m/s—that is, in the negative
direction of the x axis. Its acceleration is a(0) � 0 because just
then the particle’s velocity is not changing (Fig. 2-8a).

For 0 	 t 	 3 s, the particle still has a negative velocity,
so it continues to move in the negative direction. However,
its acceleration is no longer 0 but is increasing and positive.
Because the signs of the velocity and the acceleration are
opposite, the particle must be slowing (Fig. 2-8b).

Indeed, we already know that it stops momentarily at
t � 3 s. Just then the particle is as far to the left of the origin
in Fig. 2-1 as it will ever get. Substituting t � 3 s into the
expression for x(t), we find that the particle’s position just
then is x � �50 m (Fig. 2-8c). Its acceleration is still positive.

For t � 3 s, the particle moves to the right on the axis.
Its acceleration remains positive and grows progressively
larger in magnitude. The velocity is now positive, and it too
grows progressively larger in magnitude (Fig. 2-8d).

Sample Problem 2.03 Acceleration and dv/dt

A particle’s position on the x axis of Fig. 2-1 is given by

x � 4 � 27t � t3,

with x in meters and t in seconds.

(a) Because position x depends on time t, the particle must
be moving. Find the particle’s velocity function v(t) and ac-
celeration function a(t).

KEY IDEAS

(1) To get the velocity function v(t), we differentiate the po-
sition function x(t) with respect to time. (2) To get the accel-
eration function a(t), we differentiate the velocity function
v(t) with respect to time.

Calculations: Differentiating the position function, we find

v � �27 � 3t2, (Answer)

with v in meters per second. Differentiating the velocity
function then gives us

a � �6t, (Answer)

with a in meters per second squared.

(b) Is there ever a time when v � 0?

Calculation: Setting v(t) � 0 yields

0 � �27 � 3t2,

which has the solution

t � �3 s. (Answer)

Thus, the velocity is zero both 3 s before and 3 s after the
clock reads 0.

(c) Describe the particle’s motion for t  0. Figure 2-8 Four stages of the particle’s motion.

x
−50 m

t = 3 s
v = 0
a pos

reversing
(c)

t = 4 s
v pos
a pos

speeding up

(d)

0  4 m
t = 0
v neg
a = 0

leftward
motion

(a)

t = 1 s
v neg
a pos

slowing

(b)

Additional examples, video, and practice available at WileyPLUS



Constant Acceleration: A Special Case
In many types of motion, the acceleration is either constant or approximately so.
For example, you might accelerate a car at an approximately constant rate when
a traffic light turns from red to green. Then graphs of your position, velocity,
and acceleration would resemble those in Fig. 2-9. (Note that a(t) in Fig. 2-9c is
constant, which requires that v(t) in Fig. 2-9b have a constant slope.) Later when
you brake the car to a stop, the acceleration (or deceleration in common
language) might also be approximately constant.

Such cases are so common that a special set of equations has been derived
for dealing with them. One approach to the derivation of these equations is given
in this section. A second approach is given in the next section. Throughout both
sections and later when you work on the homework problems, keep in mind that
these equations are valid only for constant acceleration (or situations in which you
can approximate the acceleration as being constant).

First Basic Equation. When the acceleration is constant, the average accel-
eration and instantaneous acceleration are equal and we can write Eq. 2-7, with
some changes in notation, as

Here v0 is the velocity at time t � 0 and v is the velocity at any later time t.We can
recast this equation as

v � v0 � at. (2-11)

As a check, note that this equation reduces to v � v0 for t � 0, as it must.As a fur-
ther check, take the derivative of Eq. 2-11. Doing so yields dv/dt � a, which is the
definition of a. Figure 2-9b shows a plot of Eq. 2-11, the v(t) function; the function
is linear and thus the plot is a straight line.

Second Basic Equation. In a similar manner, we can rewrite Eq. 2-2 (with a
few changes in notation) as

vavg �
x � x0

t � 0

a � aavg �
v � v0

t � 0
.
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After reading this module, you should be able to . . . 

2.13 For constant acceleration, apply the relationships be-
tween position, displacement, velocity, acceleration, and
elapsed time (Table 2-1). 

2.14 Calculate a particle’s change in velocity by integrating
its acceleration function with respect to time.

2.15 Calculate a particle’s change in position by integrating
its velocity function with respect to time. 

● The following five equations describe the motion of a particle with constant acceleration:

These are not valid when the acceleration is not constant. 

x � x0 � vt �
1
2

at2.x � x0 �
1
2

(v0 � v)t,v2 � v0
2 � 2a(x � x0),

x � x0 � v0t �
1
2

at2,v � v0 � at,

Learning Objectives

Key Ideas

Figure 2-9 (a) The position x(t) of a particle
moving with constant acceleration. (b) Its
velocity v(t), given at each point by the
slope of the curve of x(t). (c) Its (constant)
acceleration, equal to the (constant) slope
of the curve of v(t).
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and then as

x � x0 � vavgt, (2-12)

in which x0 is the position of the particle at t � 0 and vavg is the average velocity
between t � 0 and a later time t.

For the linear velocity function in Eq. 2-11, the average velocity over any time
interval (say, from t � 0 to a later time t) is the average of the velocity at the be-
ginning of the interval (� v0) and the velocity at the end of the interval (� v). For
the interval from t � 0 to the later time t then, the average velocity is

(2-13)

Substituting the right side of Eq. 2-11 for v yields, after a little rearrangement,

(2-14)

Finally, substituting Eq. 2-14 into Eq. 2-12 yields

(2-15)

As a check, note that putting t � 0 yields x � x0, as it must. As a further check,
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-9a
shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Three Other Equations. Equations 2-11 and 2-15 are the basic equations for
constant acceleration; they can be used to solve any constant acceleration prob-
lem in this book. However, we can derive other equations that might prove useful
in certain specific situations. First, note that as many as five quantities can possi-
bly be involved in any problem about constant acceleration—namely, x � x0, v, t,
a, and v0. Usually, one of these quantities is not involved in the problem, either as
a given or as an unknown. We are then presented with three of the remaining
quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
same four. In Eq. 2-11, the “missing ingredient” is the displacement x � x0. In Eq.
2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate t to obtain

(2-16)

This equation is useful if we do not know t and are not required to find it. Second,
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an
equation in which a does not appear:

(2-17)

Finally, we can eliminate v0, obtaining

(2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity v0; the other involves the velocity v at time t.

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15) as
well as the specialized equations that we have derived.To solve a simple constant ac-
celeration problem, you can usually use an equation from this list (if you have the
list with you). Choose an equation for which the only unknown variable is the vari-
able requested in the problem. A simpler plan is to remember only Eqs. 2-11 and
2-15, and then solve them as simultaneous equations whenever needed.

x � x0 � vt � 1
2 at 2.

x � x0 � 1
2(v0 � v)t.

v2 � v0
2 � 2a(x � x0).

x � x0 � v0t � 1
2 at 2.

vavg � v0 � 1
2 at.

vavg � 1
2 (v0 � v).
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Table 2-1 Equations for Motion with
Constant Accelerationa

Equation Missing
Number Equation Quantity

2-11 v � v0 � at x � x0

2-15 v

2-16 t

2-17 a

2-18 v0

aMake sure that the acceleration is indeed 
constant before using the equations in this table.

x � x0 � vt � 1
2at2

x � x0 � 1
2(v0 � v)t

v2 � v0
2 � 2a(x � x0)

x � x0 � v0t � 1
2at2
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Checkpoint 4
The following equations give the position x(t) of a particle in four situations: (1) x �
3t � 4; (2) x � �5t3 � 4t2 � 6; (3) x � 2/t2 � 4/t; (4) x � 5t2 � 3.To which of these
situations do the equations of Table 2-1 apply?

choose any initial numbers because we are looking for the
elapsed time, not a particular time in, say, the afternoon, but
let’s stick with these easy numbers.) We want the car to pass
the motorcycle, but what does that mean mathematically?

It means that at some time t, the side-by-side vehicles
are at the same coordinate: xc for the car and the sum xm1 �
xm2 for the motorcycle. We can write this statement mathe-
matically as

(2-19)

(Writing this first step is the hardest part of the problem.
That is true of most physics problems. How do you go from
the problem statement (in words) to a mathematical expres-
sion? One purpose of this book is for you to build up that
ability of writing the first step — it takes lots of practice just
as in learning, say, tae-kwon-do.) 

Now let’s fill out both sides of Eq. 2-19, left side first. To
reach the passing point at xc, the car accelerates from rest. From
Eq. 2-15 , with x0 and v0 � 0, we have 

(2-20)

To write an expression for xm1 for the motorcycle, we
first find the time tm it takes to reach its maximum speed vm,
using Eq. 2-11 (v � v0 � at). Substituting v0 � 0, v � vm �
58.8 m/s, and a � am � 8.40 m/s2, that time is

(2-21)

To get the distance xm1 traveled by the motorcycle during
the first stage, we again use Eq. 2-15 with x0 � 0 and v0 � 0,
but we also substitute from Eq. 2-21 for the time.We find

(2-22)

For the remaining time of , the motorcycle travels
at its maximum speed with zero acceleration. To get the
distance, we use Eq. 2-15 for this second stage of the motion,
but now the initial velocity is (the speed at the endv0 � vm

t � tm

xm1 � 1
2amtm

2 � 1
2am� vm

am
�

2

�
1
2

vm
2

am
.

�
58.8 m/s
8.40 m/s2 � 7.00 s.

tm �
vm

am

xc � 1
2act2.

(x � x0 � v0t � 1
2at2)

xc � xm1 � xm2.

Sample Problem 2.04 Drag race of car and motorcycle 

A popular web video shows a jet airplane, a car, and a mo-
torcycle racing from rest along a runway (Fig. 2-10). Initially
the motorcycle takes the lead, but then the jet takes the lead,
and finally the car blows past the motorcycle. Here let’s focus
on the car and motorcycle and assign some reasonable values
to the motion. The motorcycle first takes the lead because its
(constant) acceleration am � 8.40 m/s2 is greater than the car’s
(constant) acceleration ac � 5.60 m/s2, but it soon loses to the
car because it reaches its greatest speed vm � 58.8 m/s before
the car reaches its greatest speed vc � 106 m/s. How long does
the car take to reach the motorcycle?

KEY IDEAS

We can apply the equations of constant acceleration to both
vehicles, but for the motorcycle we must consider the mo-
tion in two stages: (1) First it travels through distance xm1

with zero initial velocity and acceleration am � 8.40 m/s2,
reaching speed vm � 58.8 m/s. (2) Then it travels through dis-
tance xm2 with constant velocity vm � 58.8 m/s and zero ac-
celeration (that, too, is a constant acceleration). (Note that
we symbolized the distances even though we do not know
their values. Symbolizing unknown quantities is often help-
ful in solving physics problems, but introducing such un-
knowns sometimes takes physics courage.)

Calculations: So that we can draw figures and do calcula-
tions, let’s assume that the vehicles race along the positive di-
rection of an x axis, starting from x � 0 at time t � 0. (We can

Figure 2-10 A jet airplane, a car, and a motorcycle just after 
accelerating from rest.

of the first stage) and the acceleration is a � 0. So, the dis-
tance traveled during the second stage is

(2-23)xm2 � vm(t � tm) � vm(t � 7.00 s).
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Another Look at Constant Acceleration*
The first two equations in Table 2-1 are the basic equations from which the others
are derived. Those two can be obtained by integration of the acceleration with
the condition that a is constant. To find Eq. 2-11, we rewrite the definition of ac-
celeration (Eq. 2-8) as

dv � a dt.

We next write the indefinite integral (or antiderivative) of both sides:

Since acceleration a is a constant, it can be taken outside the integration.We obtain

or v � at � C. (2-25)

To evaluate the constant of integration C, we let t � 0, at which time v � v0.
Substituting these values into Eq. 2-25 (which must hold for all values of t,
including t � 0) yields

v0 � (a)(0) � C � C.

Substituting this into Eq. 2-25 gives us Eq. 2-11.
To derive Eq. 2-15, we rewrite the definition of velocity (Eq. 2-4) as

dx � v dt

and then take the indefinite integral of both sides to obtain

�dx � �v dt.

�dv � a �dt

�dv � �a dt.
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that at t � 7.00 s the plot for the motorcycle switches from
being curved (because the speed had been increasing) to be-
ing straight (because the speed is thereafter constant).

Figure 2-11 Graph of position versus time for car and motorcycle.

*This section is intended for students who have had integral calculus.
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To finish the calculation, we substitute Eqs. 2-20, 2-22, and 
2-23 into Eq. 2-19, obtaining

(2-24)

This is a quadratic equation. Substituting in the given data,
we solve the equation (by using the usual quadratic-equa-
tion formula or a polynomial solver on a calculator), finding
t � 4.44 s and t � 16.6 s.

But what do we do with two answers? Does the car pass
the motorcycle twice? No, of course not, as we can see in the
video. So, one of the answers is mathematically correct but
not physically meaningful. Because we know that the car
passes the motorcycle after the motorcycle reaches its maxi-
mum speed at t � 7.00 s, we discard the solution with t 	
7.00 s as being the unphysical answer and conclude that the
passing occurs at

(Answer)

Figure 2-11 is a graph of the position versus time for
the two vehicles, with the passing point marked. Notice

t � 16.6 s.

1
2act2 �

1
2

vm
2

am
� vm(t � 7.00 s).
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Next, we substitute for v with Eq. 2-11:

Since v0 is a constant, as is the acceleration a, this can be rewritten as

Integration now yields

(2-26)

where C� is another constant of integration. At time t � 0, we have x � x0.
Substituting these values in Eq. 2-26 yields x0 � C�. Replacing C� with x0 in Eq.
2-26 gives us Eq. 2-15.

x � v0t � 1
2 at 2 � C�,

�dx � v0�dt � a�t dt.

�dx � �(v0 � at) dt.
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After reading this module, you should be able to . . .

2.16 Identify that if a particle is in free flight (whether 
upward or downward) and if we can neglect the 
effects of air on its motion, the particle has a constant

downward acceleration with a magnitude g that we take to
be 9.8 m/s2.

2.17 Apply the constant-acceleration equations (Table 2-1) to
free-fall motion. 

● An important example of straight-line motion with constant
acceleration is that of an object rising or falling freely near
Earth’s surface. The constant acceleration equations de-
scribe this motion, but we make two changes in notation:

(1) we refer the motion to the vertical y axis with �y vertically
up; (2) we replace a with �g, where g is the magnitude of the
free-fall acceleration. Near Earth’s surface, 

g � 9.8 m/s2 � 32 ft/s2.

Learning Objectives

Key Ideas

Free-Fall Acceleration
If you tossed an object either up or down and could somehow eliminate the
effects of air on its flight, you would find that the object accelerates downward at
a certain constant rate.That rate is called the free-fall acceleration, and its magni-
tude is represented by g. The acceleration is independent of the object’s charac-
teristics, such as mass, density, or shape; it is the same for all objects.

Two examples of free-fall acceleration are shown in Fig. 2-12, which is a series
of stroboscopic photos of a feather and an apple. As these objects fall, they
accelerate downward—both at the same rate g. Thus, their speeds increase at the
same rate, and they fall together.

The value of g varies slightly with latitude and with elevation. At sea level
in Earth’s midlatitudes the value is 9.8 m/s2 (or 32 ft/s2), which is what you
should use as an exact number for the problems in this book unless otherwise
noted.

The equations of motion in Table 2-1 for constant acceleration also apply to
free fall near Earth’s surface; that is, they apply to an object in vertical flight,
either up or down, when the effects of the air can be neglected. However, note
that for free fall: (1) The directions of motion are now along a vertical y axis
instead of the x axis, with the positive direction of y upward. (This is important
for later chapters when combined horizontal and vertical motions are examined.)
(2) The free-fall acceleration is negative—that is, downward on the y axis, toward
Earth’s center—and so it has the value �g in the equations.

Figure 2-12 A feather and an apple free
fall in vacuum at the same magnitude of
acceleration g. The acceleration increases
the distance between successive images. In
the absence of air, the feather and apple
fall together.

© Jim Sugar/CORBIS
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Checkpoint 5
(a) If you toss a ball straight up, what is the sign of the ball’s displacement for the ascent,
from the release point to the highest point? (b) What is it for the descent, from the high-
est point back to the release point? (c) What is the ball’s acceleration at its highest point?

or

If we temporarily omit the units (having noted that they are
consistent), we can rewrite this as

4.9t2 � 12t � 5.0 � 0.

Solving this quadratic equation for t yields

t � 0.53 s and t � 1.9 s. (Answer)

There are two such times! This is not really surprising
because the ball passes twice through y � 5.0 m, once on the
way up and once on the way down.

5.0 m � (12 m/s)t � (1
2)(9.8 m/s2)t2.

Sample Problem 2.05 Time for full up-down flight, baseball toss

In Fig. 2-13, a pitcher tosses a baseball up along a y axis, with
an initial speed of 12 m/s.

(a) How long does the ball take to reach its maximum height?

KEY IDEAS

(1) Once the ball leaves the pitcher and before it returns to
his hand, its acceleration is the free-fall acceleration a � �g.
Because this is constant, Table 2-1 applies to the motion.
(2) The velocity v at the maximum height must be 0.

Calculation: Knowing v, a, and the initial velocity 
v0 � 12 m/s, and seeking t, we solve Eq. 2-11, which contains
those four variables.This yields

(Answer)

(b) What is the ball’s maximum height above its release point?

Calculation: We can take the ball’s release point to be y0 � 0.
We can then write Eq.2-16 in y notation, set y � y0 � y and v �
0 (at the maximum height),and solve for y.We get

(Answer)

(c) How long does the ball take to reach a point 5.0 m above
its release point?

Calculations: We know v0, a � �g, and displacement y �
y0 � 5.0 m, and we want t, so we choose Eq. 2-15. Rewriting
it for y and setting y0 � 0 give us

y � v0t � 1
2 gt2,

y �
v2 � v0

2

2a
�

0 � (12 m/s)2

2(�9.8 m/s2)
� 7.3 m.

t �
v � v0

a
�

0 � 12 m/s
�9.8 m/s2 � 1.2 s.

Figure 2-13 A pitcher tosses a
baseball straight up into the air.
The equations of free fall apply
for rising as well as for falling
objects, provided any effects
from the air can be neglected.

Ball

y = 0

y

v = 0 at
highest point

During ascent,
a = –g,
speed decreases,
and velocity
becomes less
positive

During
descent,
a = –g,
speed
increases,
and velocity
becomes
more
negative

Suppose you toss a tomato directly upward with an initial (positive) velocity v0

and then catch it when it returns to the release level. During its free-fall flight (from
just after its release to just before it is caught), the equations of Table 2-1 apply to its
motion. The acceleration is always a � �g � �9.8 m/s2, negative and thus down-
ward. The velocity, however, changes, as indicated by Eqs. 2-11 and 2-16: during the
ascent, the magnitude of the positive velocity decreases, until it momentarily be-
comes zero. Because the tomato has then stopped, it is at its maximum height.
During the descent, the magnitude of the (now negative) velocity increases.

Additional examples, video, and practice available at WileyPLUS

The free-fall acceleration near Earth’s surface is a � �g � �9.8 m/s2, and the
magnitude of the acceleration is g � 9.8 m/s2. Do not substitute �9.8 m/s2 for g.
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After reading this module, you should be able to . . . 

2.18 Determine a particle’s change in velocity by graphical
integration on a graph of acceleration versus time.

2.19 Determine a particle’s change in position by graphical
integration on a graph of velocity versus time. 

● On a graph of acceleration a versus time t, the change in
the velocity is given by 

The integral amounts to finding an area on the graph:

�t1

t0

a dt � �area between acceleration curve
and time axis, from t0 to t1 �.

v1 � v0 � �t1

t0

a dt.

● On a graph of velocity v versus time t, the change in the
position is given by

where the integral can be taken from the graph as 

�t1

t0

v dt � �area between velocity curve
and time axis, from t0 to t1

�.

x1 � x0 � �t1

t0

v dt,

Learning Objectives

Key Ideas

Graphical Integration in Motion Analysis
Integrating Acceleration. When we have a graph of an object’s acceleration a ver-
sus time t, we can integrate on the graph to find the velocity at any given time.
Because a is defined as a � dv/dt, the Fundamental Theorem of Calculus tells us that

(2-27)

The right side of the equation is a definite integral (it gives a numerical result rather
than a function),v0 is the velocity at time t0,and v1 is the velocity at later time t1.The def-
inite integral can be evaluated from an a(t) graph,such as in Fig.2-14a. In particular,

(2-28)

If a unit of acceleration is 1 m/s2 and a unit of time is 1 s, then the correspon-
ding unit of area on the graph is

(1 m/s2)(1 s) � 1 m/s,

which is (properly) a unit of velocity.When the acceleration curve is above the time
axis, the area is positive; when the curve is below the time axis, the area is negative.

Integrating Velocity. Similarly, because velocity v is defined in terms of the posi-
tion x as v � dx/dt, then

(2-29)

where x0 is the position at time t0 and x1 is the position at time t1. The definite
integral on the right side of Eq. 2-29 can be evaluated from a v(t) graph, like that
shown in Fig. 2-14b. In particular,

(2-30)

If the unit of velocity is 1 m/s and the unit of time is 1 s, then the corre-
sponding unit of area on the graph is

(1 m/s)(1 s) � 1 m,

which is (properly) a unit of position and displacement.Whether this area is posi-
tive or negative is determined as described for the a(t) curve of Fig. 2-14a.

�t1

t0

v dt � �area between velocity curve
and time axis, from t0 to t1

�.

x1 � x0 � �t1

t0

v dt,

�t1

t0

a dt � �area between acceleration curve
and time axis, from t0 to t1 �.

v1 � v0 � �t1

t0

a dt.

Figure 2-14 The area between a plotted
curve and the horizontal time axis, from
time t0 to time t1, is indicated for (a) a
graph of acceleration a versus t and (b) a
graph of velocity v versus t.

a

t0
tt1

Area

(a)

v

t0
tt1

Area

(b)

This area gives the
change in velocity.

This area gives the
change in position.
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Combining Eqs. 2-27 and 2-28, we can write

(2-31)

For convenience, let us separate the area into three regions
(Fig. 2-15b). From 0 to 40 ms, region A has no area:

areaA � 0.

From 40 ms to 100 ms, region B has the shape of a triangle,with
area

From 100 ms to 110 ms, region C has the shape of a rectan-
gle, with area

areaC � (0.010 s)(50 m/s2) � 0.50 m/s.

Substituting these values and v0 � 0 into Eq. 2-31 gives us

v1 � 0 � 0 � 1.5 m/s � 0.50 m/s,

or v1 � 2.0 m/s � 7.2 km/h. (Answer)

Comments: When the head is just starting to move forward,
the torso already has a speed of 7.2 km/h. Researchers argue
that it is this difference in speeds during the early stage of a
rear-end collision that injures the neck. The backward whip-
ping of the head happens later and could, especially if there is
no head restraint, increase the injury.

areaB � 1
2(0.060 s)(50 m/s2) � 1.5 m/s.

v1 � v0 � �area between acceleration curve
and time axis, from t0 to t1

�.

Sample Problem 2.06 Graphical integration a versus t, whiplash injury

“Whiplash injury” commonly occurs in a rear-end collision
where a front car is hit from behind by a second car. In the
1970s, researchers concluded that the injury was due to the
occupant’s head being whipped back over the top of the seat
as the car was slammed forward. As a result of this finding,
head restraints were built into cars, yet neck injuries in rear-
end collisions continued to occur.

In a recent test to study neck injury in rear-end collisions,
a volunteer was strapped to a seat that was then moved
abruptly to simulate a collision by a rear car moving at
10.5 km/h. Figure 2-15a gives the accelerations of the volun-
teer’s torso and head during the collision, which began at time
t � 0. The torso acceleration was delayed by 40 ms because
during that time interval the seat back had to compress
against the volunteer. The head acceleration was delayed by
an additional 70 ms. What was the torso speed when the head
began to accelerate?

KEY IDEA

We can calculate the torso speed at any time by finding an
area on the torso a(t) graph.

Calculations: We know that the initial torso speed is v0 � 0
at time t0 � 0, at the start of the “collision.” We want the
torso speed v1 at time t1 � 110 ms, which is when the head
begins to accelerate.

Figure 2-15 (a) The a(t) curve of the torso and head of a volunteer
in a simulation of a rear-end collision. (b) Breaking up the region
between the plotted curve and the time axis to calculate the area.

Additional examples, video, and practice available at WileyPLUS

Position The position x of a particle on an x axis locates the par-
ticle with respect to the origin, or zero point, of the axis.The position
is either positive or negative, according to which side of the origin
the particle is on, or zero if the particle is at the origin. The positive
direction on an axis is the direction of increasing positive numbers;
the opposite direction is the negative direction on the axis.

Displacement The displacement �x of a particle is the change
in its position:

�x � x2 � x1. (2-1)

Displacement is a vector quantity. It is positive if the particle has
moved in the positive direction of the x axis and negative if the
particle has moved in the negative direction.

Review & Summary

Average Velocity When a particle has moved from position x1

to position x2 during a time interval �t � t2 � t1, its average velocity
during that interval is

(2-2)

The algebraic sign of vavg indicates the direction of motion (vavg is a
vector quantity). Average velocity does not depend on the actual
distance a particle moves, but instead depends on its original and
final positions.

On a graph of x versus t, the average velocity for a time interval
�t is the slope of the straight line connecting the points on the curve
that represent the two ends of the interval.

vavg �
�x
�t

�
x2 � x1

t2 � t1
.
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The total area gives the
change in velocity.
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Average Speed The average speed savg of a particle during a
time interval �t depends on the total distance the particle moves in
that time interval:

(2-3)

Instantaneous Velocity The instantaneous velocity (or sim-
ply velocity) v of a moving particle is

(2-4)

where �x and �t are defined by Eq. 2-2.The instantaneous velocity
(at a particular time) may be found as the slope (at that particular
time) of the graph of x versus t. Speed is the magnitude of instanta-
neous velocity.

Average Acceleration Average acceleration is the ratio of a
change in velocity �v to the time interval �t in which the change occurs:

(2-7)

The algebraic sign indicates the direction of aavg.

Instantaneous Acceleration Instantaneous acceleration (or
simply acceleration) a is the first time derivative of velocity v(t)

aavg �
�v
�t

.

v � lim
�t : 0

�x
�t

�
dx
dt

,

savg �
total distance

�t
.

and the second time derivative of position x(t):

(2-8, 2-9)

On a graph of v versus t, the acceleration a at any time t is the slope
of the curve at the point that represents t.

Constant Acceleration The five equations in Table 2-1
describe the motion of a particle with constant acceleration:

v � v0 � at, (2-11)

(2-15)

(2-16)

(2-17)

(2-18)

These are not valid when the acceleration is not constant.

Free-Fall Acceleration An important example of straight-
line motion with constant acceleration is that of an object rising or
falling freely near Earth’s surface. The constant acceleration equa-
tions describe this motion, but we make two changes in notation:
(1) we refer the motion to the vertical y axis with �y vertically up;
(2) we replace a with �g, where g is the magnitude of the free-fall
acceleration. Near Earth’s surface, g � 9.8 m/s2 (� 32 ft/s2).

x � x0 � vt � 1
2at2.

x � x0 � 1
2(v0 � v)t,

v2 � v0
2 � 2a(x � x0),

x � x0 � v0t � 1
2at2,

a �
dv
dt

�
d2x
dt2 .

Questions

1 Figure 2-16 gives the velocity of a
particle moving on an x axis. What
are (a) the initial and (b) the final di-
rections of travel? (c) Does the parti-
cle stop momentarily? (d) Is the ac-
celeration positive or negative? (e) Is
it constant or varying?

2 Figure 2-17 gives the accelera-
tion a(t) of a Chihuahua as it  chases
a German shepherd along an axis. In
which of the time periods indicated
does the Chihuahua move at constant  speed?

is the sign of the particle’s position?
Is the particle’s velocity positive,
negative, or 0 at (b) t � 1 s, (c) t � 2
s, and (d) t � 3 s? (e) How many
times does the particle go through
the point x � 0?

5 Figure 2-20 gives the velocity of
a particle moving along an axis.
Point 1 is at the highest point on the
curve; point 4 is at the lowest point;
and points 2 and 6 are at the same
height. What is the direction of
travel at (a) time t � 0 and (b) point
4? (c) At which of the six numbered
points does the particle reverse its
direction of travel? (d) Rank the six
points according to the magnitude
of the acceleration, greatest first.

6 At t � 0, a particle moving along an
x axis is at position x0 � �20 m. The
signs of the particle’s initial velocity v0

(at time t0) and constant acceleration a
are, respectively, for four situations: (1)
�, �; (2) �, �; (3) �, �; (4) �, �. In
which situations will the particle (a)
stop momentarily, (b) pass through the
origin, and (c) never pass through the
origin?

7 Hanging over the railing of a
bridge, you drop an egg (no initial ve-
locity) as you throw a second egg
downward. Which curves in Fig. 2-21

a

A B C D E F G H

t

Figure 2-17 Question 2.

t (s)

x

3 4210

Figure 2-19 Question 4.

t

v

Figure 2-16 Question 1.

v

1

2 6

3 5
4

t

Figure 2-20 Question 5.

3 Figure 2-18 shows four paths along
which objects move from a starting
point to a final point, all in the same
time interval. The paths pass over a
grid of equally spaced straight lines.
Rank the paths according to (a) the av-
erage velocity of the objects and (b)
the average speed of the objects, great-
est first.

4 Figure 2-19 is a graph of a parti-
cle’s position along an x axis versus time. (a) At time t � 0, what

3

2

1

4

Figure 2-18 Question 3.

Figure 2-21 Question 7.
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apple’s release, the balloon is accelerating upward with a magni-
tude of 4.0 m/s2 and has an upward velocity of magnitude 2 m/s.
What are the (a) magnitude and (b) direction of the acceleration of
the apple just after it is released? (c) Just then, is the apple moving
upward or downward, or is it stationary? (d) What is the magni-
tude of its velocity just then? (e) In the next few moments, does the
speed of the apple increase, decrease, or remain constant? 

11 Figure 2-23 shows that a particle moving along an x axis un-
dergoes three periods of acceleration. Without written computa-
tion, rank the acceleration periods according to the increases
they produce in the particle’s velocity, greatest first.

“Cogito ergo zoom!” (I think, therefore I go fast!). In 2001, Sam
Whittingham beat Huber’s record by 19.0 km/h. What was
Whittingham’s time through the 200 m?

••7 Two trains, each having a speed of 30 km/h, are headed at
each other on the same straight track. A bird that can fly 60 km/h
flies off the front of one train when they are 60 km apart and heads
directly for the other train. On reaching the other train, the (crazy)
bird flies directly back to the first train, and so forth.What is the to-
tal distance the bird travels before the trains collide?

••8 Panic escape. Figure 2-24 shows a general situation in
which a stream of people attempt to escape through an exit door
that turns out to be locked. The people move toward the door at
speed vs � 3.50 m/s, are each d � 0.25 m in depth, and are sepa-
rated by L � 1.75 m. The
arrangement in Fig. 2-24
occurs at time t � 0. (a) At
what average rate does the
layer of people at the door
increase? (b) At what time
does the layer’s depth reach
5.0 m? (The answers reveal
how quickly such a situation
becomes dangerous.)

••9 In 1 km races, runner 1 on track 1 (with time 2 min, 27.95 s)
appears to be faster than runner 2 on track 2 (2 min, 28.15 s).
However, length L2 of track 2 might be slightly greater than length
L1 of track 1. How large can L2 � L1 be for us still to conclude that
runner 1 is faster?

ILW

Module 2-1 Position, Displacement, and Average Velocity
•1 While driving a car at 90 km/h, how far do you move while
your eyes shut for 0.50 s during a hard sneeze?

•2 Compute your average velocity in the following two cases:
(a) You walk 73.2 m at a speed of 1.22 m/s and then run 73.2 m at a
speed of 3.05 m/s along a straight track. (b) You walk for 1.00 min
at a speed of 1.22 m/s and then run for 1.00 min at 3.05 m/s along a
straight track. (c) Graph x versus t for both cases and indicate how
the average velocity is found on the graph.

•3 An automobile travels on a straight road for
40 km at 30 km/h. It then continues in the same direction for an-
other 40 km at 60 km/h. (a) What is the average velocity of the car
during the full 80 km trip? (Assume that it moves in the positive x
direction.) (b) What is the average speed? (c) Graph x versus t and
indicate how the average velocity is found on the graph.

•4 A car moves uphill at 40 km/h and then back downhill at 60
km/h.What is the average speed for the round trip?

•5 The position of an object moving along an x axis is given
by x 3t 4t2 t3, where x is in meters and t in seconds. Find the
position of the object at the following values of t: (a) 1 s, (b) 2 s,
(c) 3 s, and (d) 4 s. (e) What is the object’s displacement between t � 0
and t � 4 s? (f) What is its average velocity for the time interval
from t � 2 s to t � 4 s? (g) Graph x versus t for 0 � t � 4 s and indi-
cate how the answer for (f) can be found on the graph.

•6 The 1992 world speed record for a bicycle (human-powered
vehicle) was set by Chris Huber. His time through the measured
200 m stretch was a sizzling 6.509 s, at which he commented,

���
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Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday
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Figure 2-24 Problem 8.
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give the velocity v(t) for (a) the dropped egg
and (b) the thrown egg? (Curves A and B are
parallel; so are C, D, and E; so are F and G.)

8 The following equations give the velocity
v(t) of a particle in four situations: (a) v � 3; (b)
v � 4t2 � 2t � 6; (c) v � 3t � 4; (d) v � 5t2 � 3.
To which of these situations do the equations of
Table 2-1 apply?

9 In Fig. 2-22, a cream tangerine is thrown di-
rectly upward past three evenly spaced windows
of equal heights. Rank the windows according
to (a) the average speed of the cream tangerine
while passing them, (b) the time the cream tan-
gerine takes to pass them, (c) the magnitude of
the acceleration of the cream tangerine while
passing them, and (d) the change �v in the
speed of the cream tangerine during the pas-
sage, greatest first.

10 Suppose that a passenger intent on lunch
during his first ride in a hot-air balloon accidently drops an apple
over the side during the balloon’s liftoff. At the moment of the
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Figure 2-23 Question 11.
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••10 To set a speed record in a measured (straight-line)
distance d, a race car must be driven first in one direction (in time t1)
and then in the opposite direction (in time t2). (a) To eliminate the ef-
fects of the wind and obtain the car’s speed vc in a windless situation,
should we find the average of d/t1 and d/t2 (method 1) or should we di-
vide d by the average of t1 and t2? (b) What is the fractional difference
in the two methods when a steady wind blows along the car’s route
and the ratio of the wind speed vw to the car’s speed vc is 0.0240?

••11 You are to drive 300 km to an interview. The interview is

Car Buffer 

dL dL L L L

v vs

Figure 2-25 Problem 12.

•••13 You drive on Interstate 10 from San Antonio to Houston,
half the time at 55 km/h and the other half at 90 km/h. On the way
back you travel half the distance at 55 km/h and the other half at 
90 km/h. What is your average speed (a) from San Antonio to
Houston, (b) from Houston back to San Antonio, and (c) for the entire
trip? (d) What is your average velocity for the entire trip? (e) Sketch x
versus t for (a), assuming the motion is all in the positive x direc-
tion.Indicate how the average velocity can be found on the sketch.

Module 2-2 Instantaneous Velocity and Speed
•14 An electron moving along the x axis has a position given
by x 16te�t m, where t is in seconds. How far is the electron from
the origin when it momentarily stops?

•15 (a) If a particle’s position is given by x 4 12t 3t2

(where t is in seconds and x is in meters), what is its velocity at
s? (b) Is it moving in the positive or negative direction of x

just then? (c) What is its speed just then? (d) Is the speed
increasing or decreasing just then? (Try answering the next two
questions without further calculation.) (e) Is there ever an instant
when the velocity is zero? If so, give the time t; if not, answer no.
(f) Is there a time after t � 3 s when the particle is moving in the
negative direction of x? If so, give the time t; if not, answer no.

•16 The position function x(t) of a particle moving along an x axis
is x � 4.0 � 6.0t2, with x in meters and t in seconds. (a) At what
time and (b) where does the particle (momentarily) stop? At what
(c) negative time and (d) positive time does the particle pass
through the origin? (e) Graph x versus t for the range �5 s to �5 s.
(f) To shift the curve rightward on the graph, should we include the

t � 1

���

�

ILW

term �20t or the term �20t in x(t)? (g) Does that inclusion increase
or decrease the value of x at which the particle momentarily stops?

••17 The position of a particle moving along the x axis is given in
centimeters by x � 9.75 � 1.50t3, where t is in seconds. Calculate (a)
the average velocity during the time interval t � 2.00 s to t � 3.00 s;
(b) the instantaneous velocity at t � 2.00 s; (c) the instantaneous ve-
locity at t � 3.00 s; (d) the instantaneous velocity at t � 2.50 s; and
(e) the instantaneous velocity when the particle is midway between
its positions at t � 2.00 s and t � 3.00 s. (f) Graph x versus t and in-
dicate your answers graphically.

Module 2-3 Acceleration
•18 The position of a particle moving along an x axis is given by 
x � 12t2 � 2t3, where x is in meters and t is in seconds. Determine (a)
the position, (b) the velocity, and (c) the acceleration of the particle at
t � 3.0 s. (d) What is the maximum positive coordinate reached by
the particle and (e) at what time is it reached? (f) What is the maxi-
mum positive velocity reached by the particle and (g) at what time is
it reached? (h) What is the acceleration of the particle at the instant
the particle is not moving (other than at t � 0)? (i) Determine the av-
erage velocity of the particle between t � 0 and t � 3 s.

•19 At a certain time a particle had a speed of 18 m/s in
the positive x direction, and 2.4 s later its speed was 30 m/s in the
opposite direction. What is the average acceleration of the particle
during this 2.4 s interval?

•20 (a) If the position of a particle is given by x � 20t � 5t3,
where x is in meters and t is in seconds, when, if ever, is the parti-
cle’s velocity zero? (b) When is its acceleration a zero? (c) For
what time range (positive or negative) is a negative? (d) Positive?
(e) Graph x(t), v(t), and a(t).

••21 From t � 0 to t � 5.00 min, a man stands still, and from 
t � 5.00 min to t � 10.0 min, he walks briskly in a straight line at a
constant speed of 2.20 m/s. What are (a) his average velocity vavg

and (b) his average acceleration aavg in the time interval 2.00 min to
8.00 min? What are (c) vavg and (d) aavg in the time interval 3.00 min
to 9.00 min? (e) Sketch x versus t and v versus t, and indicate how
the answers to (a) through (d) can be obtained from the graphs.

••22 The position of a particle moving along the x axis depends on
the time according to the equation x � ct2 � bt3, where x is in me-
ters and t in seconds.What are the units of (a) constant c and (b) con-
stant b? Let their numerical values be 3.0 and 2.0, respectively. (c) At
what time does the particle reach its maximum positive x position?
From t � 0.0 s to t � 4.0 s, (d) what distance does the particle move
and (e) what is its displacement? Find its velocity at times (f) 1.0 s,
(g) 2.0 s, (h) 3.0 s, and (i) 4.0 s. Find its acceleration at times (j) 1.0 s,
(k) 2.0 s, (l) 3.0 s, and (m) 4.0 s.

Module 2-4 Constant Acceleration
•23 An electron with an initial velocity v0 1.50 � 105 m/s
enters a region of length L 1.00
cm where it is electrically acceler-
ated (Fig. 2-26). It emerges with
v 5.70 � 106 m/s. What is its ac-
celeration, assumed constant?

•24 Catapulting mush-
rooms. Certain mushrooms launch
their spores by a catapult mecha-
nism.As water condenses from the
air onto a spore that is attached to
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Figure 2-26 Problem 23.

at 11�15 A.M. You plan to drive at 100 km/h, so you leave at 8�00
A.M. to allow some extra time. You drive at that speed for the first
100 km, but then construction work forces you to slow to 40 km/h
for 40 km.What would be the least speed needed for the rest of the
trip to arrive in time for the interview?

•••12 Traffic shock wave. An abrupt slowdown in concen-
trated traffic can travel as a pulse, termed a shock wave, along the
line of cars, either downstream (in the traffic direction) or up-
stream, or it can be stationary. Figure 2-25 shows a uniformly
spaced line of cars moving at speed v � 25.0 m/s toward a uni-
formly spaced line of slow cars moving at speed vs � 5.00 m/s.
Assume that each faster car adds length L � 12.0 m (car length
plus buffer zone) to the line of slow cars when it joins the line, and as-
sume it slows abruptly at the last instant. (a) For what separation dis-
tance d between the faster cars does the shock wave remain
stationary? If the separation is twice that amount, what are the (b)
speed and (c) direction (upstream or downstream) of the shock wave?
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Figure 2-27 Problems 34 and 35.

••35 Figure 2-27 shows a red car
and a green car that move toward
each other. Figure 2-28 is a graph of
their motion, showing the positions
xg0 � 270 m and xr0 � �35.0 m at
time t � 0. The green car has a con-
stant speed of 20.0 m/s and the red
car begins from rest. What is the ac-
celeration magnitude of the red car?

••36 A car moves along an x axis through a distance of 900 m,
starting at rest (at x � 0) and ending at rest (at x � 900 m).
Through the first of that distance, its acceleration is �2.25 m/s2.
Through the rest of that distance, its acceleration is �0.750 m/s2.
What are (a) its travel time through the 900 m and (b) its maxi-
mum speed? (c) Graph position x, velocity v, and acceleration a
versus time t for the trip.

••37 Figure 2-29 depicts the motion
of a particle moving along an x axis
with a constant acceleration. The fig-
ure’s vertical scaling is set by xs � 6.0 m.
What are the (a) magnitude and (b) di-
rection of the particle’s acceleration?

••38 (a) If the maximum acceleration
that is tolerable for passengers in a
subway train is 1.34 m/s2 and subway
stations are located 806 m apart, what
is the maximum speed a subway train
can attain between stations? (b) What
is the travel time between stations? (c) If a subway train stops for 20 s
at each station, what is the maximum average speed of the train, from
one start-up to the next? (d) Graph x, v, and a versus t for the interval
from one start-up to the next.

••39 Cars A and B move in
the same direction in adjacent
lanes.The position x of car A is
given in Fig. 2-30, from time
t � 0 to t � 7.0 s. The figure’s
vertical scaling is set by xs �
32.0 m.At t � 0, car B is at x �
0, with a velocity of 12 m/s and
a negative constant accelera-
tion aB. (a) What must aB be
such that the cars are (momen-
tarily) side by side (momentarily at the same value of x) at t � 4.0 s?
(b) For that value of aB, how many times are the cars side by side?
(c) Sketch the position x of car B versus time t on Fig. 2-30. How
many times will the cars be side by side if the magnitude of accelera-
tion aB is (d) more than and (e) less than the answer to part (a)?

••40 You are driving toward a traffic signal when it turns yel-
low. Your speed is the legal speed limit of v0 55 km/h; your best
deceleration rate has the magnitude a � 5.18 m/s2.Your best reaction
time to begin braking is T � 0.75 s.To avoid having the front of your
car enter the intersection after the light turns red, should you
brake to a stop or continue to move at 55 km/h if the distance to
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the mushroom, a drop grows on one side of the spore and a film
grows on the other side.The spore is bent over by the drop’s weight,
but when the film reaches the drop, the drop’s water suddenly
spreads into the film and the spore springs upward so rapidly that it
is slung off into the air. Typically, the spore reaches a speed of 1.6
m/s in a 5.0 mm launch; its speed is then reduced to zero in 1.0 mm
by the air. Using those data and assuming constant accelerations,
find the acceleration in terms of g during (a) the launch and (b) the
speed reduction.

•25 An electric vehicle starts from rest and accelerates at a rate
of 2.0 m/s2 in a straight line until it reaches a speed of 20 m/s. The
vehicle then slows at a constant rate of 1.0 m/s2 until it stops. (a)
How much time elapses from start to stop? (b) How far does the
vehicle travel from start to stop?

•26 A muon (an elementary particle) enters a region with a speed
of 5.00 � 106 m/s and then is slowed at the rate of 1.25 � 1014 m/s2.
(a) How far does the muon take to stop? (b) Graph x versus t and v
versus t for the muon.

•27 An electron has a constant acceleration of �3.2 m/s2. At a
certain instant its velocity is �9.6 m/s. What is its velocity (a) 2.5 s
earlier and (b) 2.5 s later?

•28 On a dry road, a car with good tires may be able to brake
with a constant deceleration of 4.92 m/s2. (a) How long does such
a car, initially traveling at 24.6 m/s, take to stop? (b) How far does
it travel in this time? (c) Graph x versus t and v versus t for the
deceleration.

•29 A certain elevator cab has a total run of 190 m and a max-
imum speed of 305 m/min, and it accelerates from rest and then
back to rest at 1.22 m/s2. (a) How far does the cab move while ac-
celerating to full speed from rest? (b) How long does it take to
make the nonstop 190 m run, starting and ending at rest?

•30 The brakes on your car can slow you at a rate of 5.2 m/s2. (a)
If you are going 137 km/h and suddenly see a state trooper, what is
the minimum time in which you can get your car under the 90 km/h
speed limit? (The answer reveals the futility of braking to keep
your high speed from being detected with a radar or laser gun.)
(b) Graph x versus t and v versus t for such a slowing.

•31 Suppose a rocket ship in deep space moves with con-
stant acceleration equal to 9.8 m/s2, which gives the illusion of nor-
mal gravity during the flight. (a) If it starts from rest, how long will
it take to acquire a speed one-tenth that of light, which travels at
3.0 � 108 m/s? (b) How far will it travel in so doing?

•32 A world’s land speed record was set by Colonel John
P. Stapp when in March 1954 he rode a rocket-propelled sled that
moved along a track at 1020 km/h. He and the sled were brought to
a stop in 1.4 s. (See Fig. 2-7.) In terms of g, what acceleration did he
experience while stopping?

•33 A car traveling 56.0 km/h is 24.0 m from a barrier
when the driver slams on the brakes. The car hits the barrier 2.00 s
later. (a) What is the magnitude of the car’s constant acceleration
before impact? (b) How fast is the car traveling at impact?

••34 In Fig. 2-27, a red car and a green car, identical except for the
color, move toward each other in adjacent lanes and parallel to an x
axis. At time t � 0, the red car is at xr � 0 and the green car is at xg �
220 m. If the red car has a constant velocity of 20 km/h, the cars pass
each other at x � 44.5 m, and if it has a constant velocity of 40 km/h,
they pass each other at x � 76.6 m. What are (a) the initial velocity
and (b) the constant acceleration of the green car?
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the intersection and the duration of the yellow light are (a) 40 m and
2.8 s, and (b) 32 m and 1.8 s? Give an answer of brake, continue, either
(if either strategy works), or neither (if neither strategy works and the
yellow duration is inappropriate).

••41 As two trains move
along a track, their conductors
suddenly notice that they are
headed toward each other.
Figure 2-31 gives their velocities
v as functions of time t as the
conductors slow the trains. The
figure’s vertical scaling is set by
vs � 40.0 m/s. The slowing
processes begin when the trains are 200 m apart.What is their separa-
tion when both trains have stopped?

•••42 You are arguing over a cell phone while trailing an
unmarked police car by 25 m; both your car and the police car are
traveling at 110 km/h. Your argument diverts your attention from
the police car for 2.0 s (long enough for you to look at the phone
and yell, “I won’t do that!”). At the beginning of that 2.0 s, the po-
lice officer begins braking suddenly at 5.0 m/s2. (a) What is the sep-
aration between the two cars when your attention finally returns?
Suppose that you take another 0.40 s to realize your danger and
begin braking. (b) If you too brake at 5.0 m/s2, what is your speed
when you hit the police car?

•••43 When a high-speed passenger train traveling at
161 km/h rounds a bend, the engineer is shocked to see that a
locomotive has improperly entered onto the track from a siding
and is a distance D � 676 m ahead (Fig. 2-32). The locomotive is
moving at 29.0 km/h. The engineer of the high-speed train imme-
diately applies the brakes. (a) What must be the magnitude of the
resulting constant deceleration if a collision is to be just avoided?
(b) Assume that the engineer is at x � 0 when, at t � 0, he first

•46 Raindrops fall 1700 m from a cloud to the ground. (a) If they
were not slowed by air resistance, how fast would the drops be
moving when they struck the ground? (b) Would it be safe to walk
outside during a rainstorm?

•47 At a construction site a pipe wrench struck the ground
with a speed of 24 m/s. (a) From what height was it inadvertently
dropped? (b) How long was it falling? (c) Sketch graphs of y, v,
and a versus t for the wrench.

•48 A hoodlum throws a stone vertically downward with an ini-
tial speed of 12.0 m/s from the roof of a building, 30.0 m above the
ground. (a) How long does it take the stone to reach the ground?
(b) What is the speed of the stone at impact?

•49 A hot-air balloon is ascending at the rate of 12 m/s and
is 80 m above the ground when a package is dropped over the side.
(a) How long does the package take to reach the ground? (b) With
what speed does it hit the ground?

••50 At time t � 0, apple 1 is dropped from a bridge onto a road-
way beneath the bridge; somewhat later, apple 2 is thrown down
from the same height. Figure 2-33 gives the vertical positions y of
the apples versus t during the falling, until both apples have hit the
roadway. The scaling is set by ts � 2.0 s. With approximately what
speed is apple 2 thrown down?
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••51 As a runaway scientific bal-
loon ascends at 19.6 m/s, one of its
instrument packages breaks free of a
harness and free-falls. Figure 2-34
gives the vertical velocity of the
package versus time, from before it
breaks free to when it reaches the
ground. (a) What maximum height
above the break-free point does it
rise? (b) How high is the break-free
point above the ground?

••52 A bolt is dropped from a bridge under construction,
falling 90 m to the valley below the bridge. (a) In how much
time does it pass through the last 20% of its fall? What is its speed
(b) when it begins that last 20% of its fall and (c) when it reaches
the valley beneath the bridge?

••53 A key falls from a bridge that is 45 m above the
water. It falls directly into a model boat, moving with constant
velocity, that is 12 m from the point of impact when the key is re-
leased.What is the speed of the boat?

••54 A stone is dropped into a river from a bridge 43.9 m
above the water. Another stone is thrown vertically down 1.00 s
after the first is dropped. The stones strike the water at the same
time. (a) What is the initial speed of the second stone? (b) Plot
velocity versus time on a graph for each stone, taking zero time as
the instant the first stone is released.
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Module 2-5 Free-Fall Acceleration
•44 When startled, an armadillo will leap upward. Suppose it
rises 0.544 m in the first 0.200 s. (a) What is its initial speed as it
leaves the ground? (b) What is its speed at the height of 0.544 m?
(c) How much higher does it go?

•45 (a) With what speed must a ball be thrown verti-
cally from ground level to rise to a maximum height of 50 m?
(b) How long will it be in the air? (c) Sketch graphs of y, v, and a
versus t for the ball. On the first two graphs, indicate the time at
which 50 m is reached.
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spots the locomotive. Sketch x(t) curves for the locomotive and
high-speed train for the cases in which a collision is just avoided
and is not quite avoided.



time t � 0.At t � 1.5 s it passes the top of a tall tower, and 1.0 s later
it reaches its maximum height.What is the height of the tower?

•••61 A steel ball is dropped from a building’s roof and passes
a window, taking 0.125 s to fall from the top to the bottom of the
window, a distance of 1.20 m. It then falls to a sidewalk and
bounces back past the window, moving from bottom to top in
0.125 s. Assume that the upward flight is an exact reverse of the
fall. The time the ball spends below the bottom of the window is
2.00 s. How tall is the building?

•••62 A basketball player grabbing a rebound jumps
76.0 cm vertically. How much total time (ascent and descent) does
the player spend (a) in the top 15.0 cm of this jump and (b) in the
bottom 15.0 cm? (The player seems to hang in the air at the top.)

•••63 A drowsy cat spots a flowerpot that sails first up and then
down past an open window.The pot is in view for a total of 0.50 s, and
the top-to-bottom height of the window is 2.00 m. How high above the
window top does the  flowerpot go?

•••64 A ball is shot vertically up-
ward from the surface of another
planet. A plot of y versus t for the
ball is shown in Fig. 2-36, where y is
the height of the ball above its start-
ing point and t � 0 at the instant the
ball is shot. The figure’s vertical scal-
ing is set by ys � 30.0 m.What are the
magnitudes of (a) the free-fall accel-
eration on the planet and (b) the ini-
tial velocity of the ball?
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••55 A ball of moist clay falls 15.0 m to the ground. It is
in contact with the ground for 20.0 ms before stopping. (a) What is
the magnitude of the average acceleration of the ball during the time
it is in contact with the ground? (Treat the ball as a particle.) (b) Is the
average acceleration up or down?

••56 Figure 2-35
shows the speed v versus
height y of a ball tossed
directly upward, along a y
axis. Distance d is 0.40 m.
The speed at height yA is
vA.The speed at height yB

is vA. What is speed vA?

••57 To test the quality
of a tennis ball, you drop
it onto the floor from a
height of 4.00 m. It re-
bounds to a height of 2.00 m. If the ball is in contact with the floor
for 12.0 ms, (a) what is the magnitude of its average acceleration
during that contact and (b) is the average acceleration up or down?

••58 An object falls a distance h from rest. If it travels 0.50h in
the last 1.00 s, find (a) the time and (b) the height of its fall. (c)
Explain the physically unacceptable solution of the quadratic
equation in t that you obtain.

••59 Water drips from the nozzle of a shower onto the floor 200
cm below. The drops fall at regular (equal) intervals of time, the
first drop striking the floor at the instant the fourth drop begins to
fall. When the first drop strikes the floor, how far below the nozzle
are the (a) second and (b) third drops?

••60 A rock is thrown vertically upward from ground level at
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SSM Module 2-6 Graphical Integration in Motion Analysis
•65 Figure 2-15a gives the acceleration of a volunteer’s
head and torso during a rear-end collision. At maximum head ac-
celeration, what is the speed of (a) the head and (b) the torso?

••66 In a forward punch in karate, the fist begins at rest at
the waist and is brought rapidly forward until the arm is fully ex-
tended. The speed v(t) of the fist is given in Fig. 2-37 for someone
skilled in karate. The vertical scaling is set by vs � 8.0 m/s. How far
has the fist moved at (a) time t � 50 ms and (b) when the speed of
the fist is maximum?

••67 When a soccer
ball is kicked to-
ward a player and
the player deflects
the ball by “head-
ing” it, the accelera-
tion of the head dur-
ing the collision can
be significant. Figure
2-38 gives the meas-
ured acceleration
a(t) of a soccer player’s head for a bare head and a helmeted head,
starting from rest. The scaling on the vertical axis is set by as � 200
m/s2. At time t � 7.0 ms, what is the difference in the speed acquired
by the bare head and the speed acquired by the helmeted head?

••68 A salamander of the genus Hydromantes captures
prey by launching its tongue
as a projectile: The skeletal
part of the tongue is shot for-
ward, unfolding the rest of
the tongue, until the outer
portion lands on the prey,
sticking to it. Figure 2-39
shows the acceleration mag-
nitude a versus time t for the
acceleration phase of the
launch in a typical situation.
The indicated accelerations are
a2 � 400 m/s2 and a1 � 100 m/s2.
What is the outward speed of the
tongue at the end of the
acceleration phase?

••69 How far does the run-
ner whose velocity–time graph is
shown in Fig. 2-40 travel in 16 s?
The figure’s vertical scaling is set
by vs � 8.0 m/s.
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•••70 Two particles move along an x axis. The position of particle 1
is given by x � 6.00t2 � 3.00t � 2.00 (in meters and seconds); the ac-
celeration of particle 2 is given by a � �8.00t (in meters per second
squared and seconds) and, at t � 0, its velocity is 20 m/s. When the
velocities of the particles match, what is their velocity?

Additional Problems
71 In an arcade video game, a spot is programmed to move
across the screen according to x � 9.00t � 0.750t3, where x is dis-
tance in centimeters measured from the left edge of the screen and
t is time in seconds. When the spot reaches a screen edge, at either 
x � 0 or x � 15.0 cm, t is reset to 0 and the spot starts moving again
according to x(t). (a) At what time after starting is the spot instan-
taneously at rest? (b) At what value of x does this occur? (c) What
is the spot’s acceleration (including sign) when this occurs? (d)
Is it moving right or left just prior to coming to rest? (e) Just after?
(f) At what time t � 0 does it first reach an edge of the screen?

72 A rock is shot vertically upward from the edge of the top of a
tall building. The rock reaches its maximum height above the top of
the building 1.60 s after being shot. Then, after barely missing the
edge of the building as it falls downward, the rock strikes the ground
6.00 s after it is launched. In SI units: (a) with what upward velocity
is the rock shot, (b) what maximum height above the top of the
building is reached by the rock, and (c) how tall is the building?

73 At the instant the traffic light turns green, an automobile
starts with a constant acceleration a of 2.2 m/s2.At the same instant
a truck, traveling with a constant speed of 9.5 m/s, overtakes and
passes the automobile. (a) How far beyond the traffic signal will
the automobile overtake the truck? (b) How fast will the automo-
bile be traveling at that instant?

74 A pilot flies horizontally at 1300 km/h, at height h � 35 m
above initially level ground. However, at time t � 0, the pilot be-
gins to fly over ground sloping upward at angle u � 4.3° (Fig. 2-41).
If the pilot does not change the airplane’s heading, at what time t
does the plane strike the ground?

θ 

h

Figure 2-41 Problem 74.

75 To stop a car, first you require a certain reaction time to be-
gin braking; then the car slows at a constant rate. Suppose that the
total distance moved by your car during these two phases is 56.7 m
when its initial speed is 80.5 km/h, and 24.4 m when its initial speed
is 48.3 km/h. What are (a) your reaction time and (b) the magni-
tude of the acceleration?

76 Figure 2-42 shows part of a street where traffic flow
is to be controlled to allow a platoon of cars to move smoothly
along the street. Suppose that the platoon leaders have just
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Figure 2-42 Problem 76.

reached intersection 2, where the green appeared when they were
distance d from the intersection. They continue to travel at a cer-
tain speed vp (the speed limit) to reach intersection 3, where the
green appears when they are distance d from it. The intersections
are separated by distances D23 and D12. (a) What should be the
time delay of the onset of green at intersection 3 relative to that at
intersection 2 to keep the platoon moving smoothly?

Suppose, instead, that the platoon had been stopped by a red
light at intersection 1. When the green comes on there, the leaders
require a certain time tr to respond to the change and an additional
time to accelerate at some rate a to the cruising speed vp. (b) If the
green at intersection 2 is to appear when the leaders are distance d
from that intersection, how long after the light at intersection 1
turns green should the light at intersection 2 turn green?

77 A hot rod can accelerate from 0 to 60 km/h in 5.4 s.
(a) What is its average acceleration, in m/s2, during this time? (b)
How far will it travel during the 5.4 s, assuming its acceleration is con-
stant? (c) From rest, how much time would it require to go a distance
of 0.25 km if its acceleration could be maintained at the value in (a)?

78 A red train traveling at 72 km/h and a green train traveling
at 144 km/h are headed toward each other along a straight, level
track. When they are 950 m apart, each engineer sees the other’s
train and applies the brakes. The brakes slow each train at the rate
of 1.0 m/s2. Is there a collision? If so, answer yes and give the speed
of the red train and the speed of the green train at impact, respec-
tively. If not, answer no and give the separation between the trains
when they stop.

79 At time t � 0, a rock
climber accidentally allows a
piton to fall freely from a high
point on the rock wall to the
valley below him.Then, after a
short delay, his climbing part-
ner, who is 10 m higher on the
wall, throws a piton down-
ward. The positions y of the
pitons versus t during the
falling are given in Fig. 2-43.
With what speed is the second piton thrown?

80 A train started from rest and moved with constant accelera-
tion. At one time it was traveling 30 m/s, and 160 m farther on it
was traveling 50 m/s. Calculate (a) the acceleration, (b) the time re-
quired to travel the 160 m mentioned, (c) the time required to at-
tain the speed of 30 m/s, and (d) the distance moved from rest to
the time the train had a speed of 30 m/s. (e) Graph x versus t and v
versus t for the train, from rest.

81 A particle’s acceleration along an x axis is a � 5.0t, with t
in seconds and a in meters per
second squared. At t 2.0 s,
its velocity is �17 m/s. What is
its velocity at t � 4.0 s?

82 Figure 2-44 gives the ac-
celeration a versus time t for
a particle moving along an x
axis. The a-axis scale is  set by
as � 12.0 m/s2. At t � �2.0 s,
the particle’s velocity is 7.0
m/s. What is its velocity at t �
6.0 s?
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83 Figure 2-45 shows a simple device for measuring your
reaction time. It consists of a cardboard strip marked with a scale
and two large dots. A friend holds the strip vertically, with thumb
and forefinger at the dot on the right in Fig. 2-45. You then posi-
tion your thumb and forefinger at the other dot (on the left in
Fig. 2-45), being careful not to touch the strip. Your friend re-
leases the strip, and you try to pinch it as soon as possible after
you see it begin to fall. The mark at the place where you pinch the
strip gives your reaction time. (a) How far from the lower dot
should you place the 50.0 ms mark? How much higher should
you place the marks for (b) 100, (c) 150, (d) 200, and (e) 250 ms?
(For example, should the 100 ms marker be 2 times as far from
the dot as the 50 ms marker? If so, give an answer of 2 times. Can
you find any pattern in the answers?)

the acceleration of the particle at t 5.0 s? (d) What is the average ve-
locity of the particle between t 1.0 s and t 5.0 s? (e) What is the
average acceleration of the particle between t 1.0 s and t 5.0 s?

91 A rock is dropped from a 100-m-high cliff. How long does it
take to fall (a) the first 50 m and (b) the second 50 m?

92 Two subway stops are separated by 1100 m. If a subway train
accelerates at �1.2 m/s2 from rest through the first half of the dis-
tance and decelerates at �1.2 m/s2 through the second half, what
are (a) its travel time and (b) its maximum speed? (c) Graph x, v,
and a versus t for the trip.

93 A stone is thrown vertically upward. On its way up it passes
point A with speed v, and point B, 3.00 m higher than A, with speed

Calculate (a) the speed v and (b) the maximum height reached
by the stone above point B.

94 A rock is dropped (from rest) from the top of a 60-m-tall
building. How far above the ground is the rock 1.2 s before it
reaches the ground?

95 An iceboat has a constant velocity toward the east when
a sudden gust of wind causes the iceboat to have a constant accel-
eration toward the east for a period of 3.0 s. A plot of x versus t is
shown in Fig. 2-47, where t 0 is taken to be the instant the wind
starts to blow and the positive x axis is toward the east. (a) What is
the acceleration of the iceboat during the 3.0 s interval? (b) What
is the velocity of the iceboat at the end of the 3.0 s interval? (c) If
the acceleration remains constant for an additional 3.0 s, how far
does the iceboat travel during this second 3.0 s interval?
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Figure 2-45 Problem 83.

84 A rocket-driven sled running on a straight, level track is
used to investigate the effects of large accelerations on humans.
One such sled can attain a speed of 1600 km/h in 1.8 s, starting
from rest. Find (a) the acceleration (assumed constant) in terms of
g and (b) the distance traveled.

85 A mining cart is pulled up a hill at 20 km/h and then pulled
back down the hill at 35 km/h through its original level. (The time
required for the cart’s reversal at the top of its climb is negligible.)
What is the average speed of the cart for its round trip, from its
original level back to its original level?

86 A motorcyclist who is moving along an x axis directed to-
ward the east has an acceleration given by a � (6.1 � 1.2t) m/s2

for 0 t 6.0 s. At t 0, the velocity and position of the cyclist
are 2.7 m/s and 7.3 m. (a) What is the maximum speed achieved
by the cyclist? (b) What total distance does the cyclist travel be-
tween t � 0 and 6.0 s?

87 When the legal speed limit for the New York Thruway
was increased from 55 mi/h to 65 mi/h, how much time was saved
by a motorist who drove the 700 km between the Buffalo entrance
and the New York City exit at the legal speed limit?

88 A car moving with constant acceleration covered the distance
between two points 60.0 m apart in 6.00 s. Its speed as it passed the
second point was 15.0 m/s. (a) What was the speed at the first
point? (b) What was the magnitude of the acceleration? (c) At
what prior distance from the first point was the car at rest? (d) Graph
x versus t and v versus t for the car, from rest (t � 0).

89 A certain juggler usually tosses balls vertically to
a height H. To what height must they be tossed if they are to spend
twice as much time in the air?

90 A particle starts from the ori-
gin at t 0 and moves along the
positive x axis. A graph of the veloc-
ity of the particle as a function of the
time is shown in Fig. 2-46; the v-axis
scale is set by vs 4.0 m/s. (a) What
is the coordinate of the particle at 
t 5.0 s? (b) What is the velocity of
the particle at t 5.0 s? (c) What is�
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96 A lead ball is dropped in a lake from a diving board 5.20 m
above the water. It hits the water with a certain velocity and then
sinks to the bottom with this same constant velocity. It reaches the
bottom 4.80 s after it is dropped. (a) How deep is the lake? What
are the (b) magnitude and (c) direction (up or down) of the aver-
age velocity of the ball for the entire fall? Suppose that all the wa-
ter is drained from the lake.The ball is now thrown from the diving
board so that it again reaches the bottom in 4.80 s. What are the
(d) magnitude and (e) direction of the initial velocity of the ball?

97 The single cable supporting an unoccupied construction ele-
vator breaks when the elevator is at rest at the top of a 120-m-high
building. (a) With what speed does the elevator strike the ground?
(b) How long is it falling? (c) What is its speed when it passes the
halfway point on the way down? (d) How long has it been falling
when it passes the halfway point?

98 Two diamonds begin a free fall from rest from the same
height, 1.0 s apart. How long after the first diamond begins to fall
will the two diamonds be 10 m apart?

99 A ball is thrown vertically downward from the top of a 36.6-
m-tall building. The ball passes the top of a window that is 12.2 m
above the ground 2.00 s after being thrown. What is the speed of
the ball as it passes the top of the window?
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100 A parachutist bails out and freely falls 50 m. Then the para-
chute opens, and thereafter she decelerates at 2.0 m/s2. She reaches
the ground with a speed of 3.0 m/s. (a) How long is the parachutist
in the air? (b) At what height does the fall begin?

101 A ball is thrown down vertically with an initial speed of v0

from a height of h. (a) What is its speed just before it strikes the
ground? (b) How long does the ball take to reach the ground?
What would be the answers to (c) part a and (d) part b if the ball
were thrown upward from the same height and with the same ini-
tial speed? Before solving any equations, decide whether the an-
swers to (c) and (d) should be greater than, less than, or the same
as in (a) and (b).

102 The sport with the fastest moving ball is jai alai, where
measured speeds have reached 303 km/h. If a professional jai alai
player faces a ball at that speed and involuntarily blinks, he
blacks out the scene for 100 ms. How far does the ball move dur-
ing the blackout?

103 If a baseball pitcher throws a fastball at a horizontal speed of
160 km/h, how long does the ball take to reach home plate 18.4 m
away?

104 A proton moves along the x axis according to the equation
, where x is in meters and t is in seconds. Calculate (a)

the average velocity of the proton during the first 3.0 s of its motion,
(b) the instantaneous velocity of the proton at t � 3.0 s, and (c) the
instantaneous acceleration of the proton at t � 3.0 s. (d) Graph x
versus t and indicate how the answer to (a) can be obtained from the
plot. (e) Indicate the answer to (b) on the graph. (f) Plot v versus t
and indicate on it the answer to (c).

105 A motorcycle is moving at 30 m/s when the rider applies the
brakes, giving the motorcycle a constant deceleration. During the 3.0 s
interval immediately after braking begins, the speed decreases to
15 m/s. What distance does the motorcycle travel from the instant
braking begins until the motorcycle stops?

106 A shuffleboard disk is accelerated at a constant rate from rest
to a speed of 6.0 m/s over a 1.8 m distance by a player using a cue.At
this point the disk loses contact with the cue and slows at a constant
rate of 2.5 m/s2 until it stops. (a) How much time elapses from when
the disk begins to accelerate until it stops? (b) What total distance
does the disk travel?

107 The head of a rattlesnake can accelerate at 50 m/s2 in striking
a victim. If a car could do as well, how long would it take to reach a
speed of 100 km/h from rest?

108 A jumbo jet must reach a speed of 360 km/h on the runway
for takeoff. What is the lowest constant acceleration needed for
takeoff from a 1.80 km runway?

109 An automobile driver increases the speed at a constant rate
from 25 km/h to 55 km/h in 0.50 min. A bicycle rider speeds up at a
constant rate from rest to 30 km/h in 0.50 min. What are the magni-
tudes of (a) the driver’s acceleration and (b) the rider’s acceleration?

110 On average, an eye blink lasts about 100 ms. How far does a
MiG-25 “Foxbat” fighter travel during a pilot’s blink if the plane’s
average velocity is 3400 km/h?

111 A certain sprinter has a top speed of 11.0 m/s. If the sprinter
starts from rest and accelerates at a constant rate, he is able to
reach his top speed in a distance of 12.0 m. He is then able to main-
tain this top speed for the remainder of a 100 m race. (a) What is
his time for the 100 m race? (b) In order to improve his time, the
sprinter tries to decrease the distance required for him to reach his

x � 50t � 10t2

top speed. What must this distance be if he is to achieve a time of
10.0 s for the race?

112 The speed of a bullet is measured to be 640 m/s as the bullet
emerges from a barrel of length 1.20 m.Assuming constant accelera-
tion, find the time that the bullet spends in the barrel after it is fired.

113 The Zero Gravity Research Facility at the NASA Glenn
Research Center includes a 145 m drop tower.This is an evacuated ver-
tical tower through which, among other possibilities, a 1-m-diameter
sphere containing an experimental package can be dropped. (a)
How long is the sphere in free fall? (b) What is its speed just as it
reaches a catching device at the bottom of the tower? (c) When
caught, the sphere experiences an average deceleration of 25g as its
speed is reduced to zero.Through what distance does it travel during
the deceleration?

114 A car can be braked to a stop from the autobahn-like
speed of 200 km/h in 170 m. Assuming the acceleration is constant,
find its magnitude in (a) SI units and (b) in terms of g. (c) How much
time Tb is required for the braking? Your reaction time Tr is the time
you require to perceive an emergency, move your foot to the brake,
and begin the braking. If Tr � 400 ms, then (d) what is Tb in terms of
Tr, and (e) is most of the full time required to stop spent in reacting
or braking? Dark sunglasses delay the visual signals sent from the
eyes to the visual cortex in the brain, increasing Tr. (f) In the extreme
case in which Tr is increased by 100 ms, how much farther does
the car travel during your reaction time?

115 In 1889, at Jubbulpore, India, a tug-of-war was finally won af-
ter 2 h 41 min, with the winning team displacing the center of the
rope 3.7 m. In centimeters per minute, what was the magnitude of
the average velocity of that center point during the contest?

116 Most important in an investigation of an airplane crash by the
U.S. National Transportation Safety Board is the data stored on the
airplane’s flight-data recorder, commonly called the “black box” in
spite of its orange coloring and reflective tape. The recorder is engi-
neered to withstand a crash with an average deceleration of magni-
tude 3400g during a time interval of 6.50 ms. In such a crash, if the
recorder and airplane have zero speed at the end of that time inter-
val, what is their speed at the beginning of the interval? 

117 From January 26, 1977, to September 18, 1983, George
Meegan of Great Britain walked from Ushuaia, at the southern tip
of South America, to Prudhoe Bay in Alaska, covering 30 600 km. In
meters per second, what was the magnitude of his average velocity
during that time period?

118 The wings on a stonefly do not flap, and thus the insect cannot
fly. However, when the insect is on a water surface, it can sail across
the surface by lifting its wings into a breeze. Suppose that you time
stoneflies as they move at constant speed along a straight path of a
certain length. On average, the trips each take 7.1 s with the wings
set as sails and 25.0 s with the wings tucked in. (a) What is the ratio of
the sailing speed vs to the nonsailing speed vns? (b) In terms of vs,
what is the difference in the times the insects take to travel the first
2.0 m along the path with and without sailing?

119 The position of a particle as it moves along a y axis is given by

y � (2.0 cm) sin (pt/4),

with t in seconds and y in centimeters. (a) What is the average veloc-
ity of the particle between t � 0 and t � 2.0 s? (b) What is the instan-
taneous velocity of the particle at t � 0, 1.0, and 2.0 s? (c) What is the
average acceleration of the particle between t � 0 and t � 2.0 s?
(d) What is the instantaneous acceleration of the particle at t � 0,
1.0, and 2.0 s? 

PROBLEMS
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C H A P T E R  3

Vectors

3-1 VECTORS AND THEIR COMPONENTS

3.01 Add vectors by drawing them in head-to-tail arrange-
ments, applying the commutative and associative laws.

3.02 Subtract a vector from a second one.
3.03 Calculate the components of a vector on a given coordi-

nate system, showing them in a drawing. 

3.04 Given the components of a vector, draw the vector
and determine its magnitude and orientation. 

3.05 Convert angle measures between degrees and radians.

● Scalars, such as temperature, have magnitude only. They
are specified by a number with a unit (10°C) and obey the
rules of arithmetic and ordinary algebra. Vectors, such as dis-
placement, have both magnitude and direction (5 m, north)
and obey the rules of vector algebra.

● Two vectors and may be added geometrically by draw-
ing them to a common scale and placing them head to tail.
The vector connecting the tail of the first to the head of the
second is the vector sum . To subtract from , reverse the
direction of to get � ; then add � to . Vector addition is
commutative and obeys the associative law.

a:b
:

b
:

b
:

a:b
:

s:

b
:

a:

● The (scalar) components and of any two-dimensional
vector along the coordinate axes are found by dropping
perpendicular lines from the ends of onto the coordinate
axes. The components are given by

ax � a cos u and ay � a sin u,

where u is the angle between the positive direction of the x
axis and the direction of . The algebraic sign of a component
indicates its direction along the associated axis. Given its
components, we can find the magnitude and orientation of
the vector with

and .tan � �
ay

ax
a � 2a2

x � a2
y

a:

a:

a:
a:

ayax

What Is Physics?
Physics deals with a great many quantities that have both size and direction, and it
needs a special mathematical language—the language of vectors—to describe
those quantities. This language is also used in engineering, the other sciences, and
even in common speech. If you have ever given directions such as “Go five blocks
down this street and then hang a left,” you have used the language of vectors. In
fact, navigation of any sort is based on vectors, but physics and engineering also
need vectors in special ways to explain phenomena involving rotation and mag-
netic forces, which we get to in later chapters. In this chapter, we focus on the basic
language of vectors.

Vectors and Scalars
A particle moving along a straight line can move in only two directions. We can
take its motion to be positive in one of these directions and negative in the other.
For a particle moving in three dimensions, however, a plus sign or minus sign is no
longer enough to indicate a direction. Instead, we must use a vector.

Key Ideas

Learning Objectives
After reading this module, you should be able to . . . 
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A vector has magnitude as well as direction, and vectors follow certain
(vector) rules of combination, which we examine in this chapter. A vector
quantity is a quantity that has both a magnitude and a direction and thus can be
represented with a vector. Some physical quantities that are vector quantities are
displacement, velocity, and acceleration. You will see many more throughout this
book, so learning the rules of vector combination now will help you greatly in
later chapters.

Not all physical quantities involve a direction.Temperature, pressure, energy,
mass, and time, for example, do not “point” in the spatial sense. We call such
quantities scalars, and we deal with them by the rules of ordinary algebra. A sin-
gle value, with a sign (as in a temperature of �40°F), specifies a scalar.

The simplest vector quantity is displacement, or change of position. A vec-
tor that represents a displacement is called, reasonably, a displacement vector.
(Similarly, we have velocity vectors and acceleration vectors.) If a particle changes
its position by moving from A to B in Fig. 3-1a, we say that it undergoes a displace-
ment from A to B, which we represent with an arrow pointing from A to B.The ar-
row specifies the vector graphically. To distinguish vector symbols from other
kinds of arrows in this book, we use the outline of a triangle as the arrowhead.

In Fig. 3-1a, the arrows from A to B, from A� to B�, and from A� to B� have
the same magnitude and direction. Thus, they specify identical displacement vec-
tors and represent the same change of position for the particle. A vector can be
shifted without changing its value if its length and direction are not changed.

The displacement vector tells us nothing about the actual path that the parti-
cle takes. In Fig. 3-1b, for example, all three paths connecting points A and B cor-
respond to the same displacement vector, that of Fig. 3-1a. Displacement vectors
represent only the overall effect of the motion, not the motion itself.

Adding Vectors Geometrically
Suppose that, as in the vector diagram of Fig. 3-2a, a particle moves from A to B
and then later from B to C. We can represent its overall displacement (no matter
what its actual path) with two successive displacement vectors, AB and BC.
The net displacement of these two displacements is a single displacement from A
to C. We call AC the vector sum (or resultant) of the vectors AB and BC. This
sum is not the usual algebraic sum.

In Fig. 3-2b, we redraw the vectors of Fig. 3-2a and relabel them in the way
that we shall use from now on, namely, with an arrow over an italic symbol, as
in . If we want to indicate only the magnitude of the vector (a quantity that lacks
a sign or direction), we shall use the italic symbol, as in a, b, and s. (You can use
just a handwritten symbol.) A symbol with an overhead arrow always implies
both properties of a vector, magnitude and direction.

We can represent the relation among the three vectors in Fig. 3-2b with the
vector equation

(3-1)

which says that the vector is the vector sum of vectors and .The symbol � in
Eq. 3-1 and the words “sum” and “add” have different meanings for vectors than
they do in the usual algebra because they involve both magnitude and direction.

Figure 3-2 suggests a procedure for adding two-dimensional vectors and 
geometrically. (1) On paper, sketch vector to some convenient scale and at the
proper angle. (2) Sketch vector to the same scale, with its tail at the head of vec-
tor , again at the proper angle. (3) The vector sum is the vector that extends
from the tail of to the head of .

Properties. Vector addition, defined in this way, has two important proper-
ties. First, the order of addition does not matter. Adding to gives the sameb

:
a:

b
:

a:
s:a:

b
:

a:
b
:

a:

b
:

a:s:

s: � a: � b
:

,

a:

Figure 3-1 (a) All three arrows have the
same magnitude and direction and thus
represent the same displacement. (b) All
three paths connecting the two points cor-
respond to the same displacement vector.

(a)

A'

B'

A"

B"

A

B

A

B

(b)

Figure 3-2 (a) AC is the vector sum of the
vectors AB and BC. (b) The same vectors
relabeled.

A
C

B

(a)

Actual
path

Net displacement 
is the vector sum 

(b)

a

s

b

This is the 
resulting vector, 
from tail of a
to head of b.

To add a and b,
draw them 
head to tail.
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result as adding to (Fig. 3-3); that is,

(commutative law). (3-2)

Second, when there are more than two vectors, we can group them in any order
as we add them. Thus, if we want to add vectors , , and , we can add and 
first and then add their vector sum to . We can also add and first and then
add that sum to . We get the same result either way, as shown in Fig. 3-4. That is,

(associative law). (3-3)(a: � b
:

) � c: � a: � (b
:

� c:)

a:
c:b

:
c:

b
:

a:c:b
:

a:

a: � b
:

� b
:

� a:

a:b
:

Figure 3-3 The two vectors and can be
added in either order; see Eq. 3-2.

b
:

a:

a + b

b + a
FinishStart

Vector sum 
a

a

b

b

You get the same vector
result for either order of
adding vectors.

Figure 3-4 The three vectors , , and can be grouped in any way as they are added; see
Eq. 3-3.

c:b
:

a:

b
+

c

a + b

aa

c c

b

a + b

(a
+

b) +
c

a
+

b +
c

a
+ (b + c )

b
+

c

You get the same vector result for
 any order of adding the vectors.

Figure 3-5 The vectors and have the�b
:

b
:

b

–b

Figure 3-6 (a) Vectors , , and .
(b) To subtract vector from vector ,
add vector to vector .a:�b

:
a:b

:
�b

:
b
:

a:

d = a – b

(a)

(b)

Note head-to-tail
arrangement for 

addition

a

a

b

–b

–b Checkpoint 1
The magnitudes of displacements and are 3 m and 4 m, respectively, and .
Considering various orientations of and , what are (a) the maximum possible 
magnitude for and (b) the minimum possible magnitude?c:

b
:

a:
c: � a: � b

:
b
:

a:

The vector is a vector with the same magnitude as but the opposite
direction (see Fig. 3-5).Adding the two vectors in Fig. 3-5 would yield

Thus, adding has the effect of subtracting . We use this property to define
the difference between two vectors: let . Then

(vector subtraction); (3-4)

that is, we find the difference vector by adding the vector to the vector .
Figure 3-6 shows how this is done geometrically.

As in the usual algebra, we can move a term that includes a vector symbol from
one side of a vector equation to the other, but we must change its sign. For example,
if we are given Eq. 3-4 and need to solve for , we can rearrange the equation as

Remember that, although we have used displacement vectors here, the rules
for addition and subtraction hold for vectors of all kinds, whether they represent
velocities, accelerations, or any other vector quantity. However, we can add
only vectors of the same kind. For example, we can add two displacements, or two
velocities, but adding a displacement and a velocity makes no sense. In the arith-
metic of scalars, that would be like trying to add 21 s and 12 m.

d
:

� b
:

� a:  or  a: � d
:

� b
:

.

a:

a:�b
:

d
:

d
:

� a: � b
:

� a: � (�b
:

)

d
:

� a: � b
:

b
:

�b
:

b
:

� (�b
:

) � 0.

b
:

�b
:

Components of Vectors
Adding vectors geometrically can be tedious. A neater and easier technique
involves algebra but requires that the vectors be placed on a rectangular coordi-
nate system.The x and y axes are usually drawn in the plane of the page, as shown

same magnitude and opposite directions.
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in Fig. 3-7a. The z axis comes directly out of the page at the origin; we ignore it for
now and deal only with two-dimensional vectors.

A component of a vector is the projection of the vector on an axis. In
Fig. 3-7a, for example, ax is the component of vector on (or along) the x axis and
ay is the component along the y axis. To find the projection of a vector along an
axis, we draw perpendicular lines from the two ends of the vector to the axis, as
shown.The projection of a vector on an x axis is its x component, and similarly the
projection on the y axis is the y component. The process of finding the
components of a vector is called resolving the vector.

A component of a vector has the same direction (along an axis) as the vector.
In Fig. 3-7, ax and ay are both positive because extends in the positive direction
of both axes. (Note the small arrowheads on the components, to indicate their di-
rection.) If we were to reverse vector , then both components would be negative
and their arrowheads would point toward negative x and y. Resolving vector in
Fig. 3-8 yields a positive component bx and a negative component by.

In general, a vector has three components, although for the case of Fig. 3-7a
the component along the z axis is zero.As Figs. 3-7a and b show, if you shift a vec-
tor without changing its direction, its components do not change.

Finding the Components. We can find the components of in Fig. 3-7a geo-
metrically from the right triangle there:

ax � a cos u and ay � a sin u, (3-5)

where u is the angle that the vector makes with the positive direction of the
x axis, and a is the magnitude of . Figure 3-7c shows that and its x and y com-
ponents form a right triangle. It also shows how we can reconstruct a vector from
its components: we arrange those components head to tail. Then we complete a
right triangle with the vector forming the hypotenuse, from the tail of one com-
ponent to the head of the other component.

Once a vector has been resolved into its components along a set of axes, the
components themselves can be used in place of the vector. For example, in
Fig. 3-7a is given (completely determined) by a and u. It can also be given by its
components ax and ay. Both pairs of values contain the same information. If we
know a vector in component notation (ax and ay) and want it in magnitude-angle
notation (a and u), we can use the equations

and tan (3-6)

to transform it.
In the more general three-dimensional case, we need a magnitude and two

angles (say, a, u, and f) or three components (ax, ay, and az) to specify a vector.

� �
ay

ax
a � 2a2

x � ay
2

a:

a:a:
a:

a:

b
:

a:

a:

a:

Figure 3-8 The component of on the 
x axis is positive, and that on the y axis is
negative.

b
:

O

y (m) 

θ x (m)
bx = 7 m 

b y
=

–5
 m

 

b

This is the x component
of the vector.

This is the y component
of the vector.
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Figure 3-7 (a) The components ax and ay of
vector . (b) The components are unchanged if
the vector is shifted, as long as the magnitude
and orientation are maintained. (c) The com-
ponents form the legs of a right triangle whose
hypotenuse is the magnitude of the vector.

a:

y

x
O ax

ay

θ θ 

(a) (b)

y

x
Oax

ay
a a

θ
(c)

ay

ax

a

This is the y component
of the vector.

This is the x component
of the vector.

The components 
and the vector 
form a right triangle.

Checkpoint 2
In the figure, which of the indicated methods for combining the x and y components of vector are proper to determine that vector?a:

y

x
ax

ay

(a)

a

y

x

ax

ay

(d)

a

y

x
ax

ay

(e)

a

x
ax

ay

y

( f )

a

y

x
ax

ay

(b)

a

y

x
ax

ay

(c)

a
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KEY IDEA

We are given the magnitude (215 km) and the angle (22° east
of due north) of a vector and need to find the components
of the vector.

Calculations: We draw an xy coordinate system with the
positive direction of x due east and that of y due north (Fig.
3-10). For convenience, the origin is placed at the airport.
(We don’t have to do this. We could shift and misalign the
coordinate system but, given a choice, why make the prob-
lem more difficult?) The airplane’s displacement points
from the origin to where the airplane is sighted.

To find the components of , we use Eq. 3-5 with u �
68° (� 90° � 22°):

dx � d cos u � (215 km)(cos 68°)
� 81 km (Answer)

dy � d sin u � (215 km)(sin 68°)

� 199 km � 2.0 � 102 km. (Answer)

Thus, the airplane is 81 km east and 2.0 � 102 km north of
the airport.

d
:

d
:

Sample Problem 3.02 Finding components, airplane flight

A small airplane leaves an airport on an overcast day and is
later sighted 215 km away, in a direction making an angle of
22° east of due north. This means that the direction is not
due north (directly toward the north) but is rotated 22° to-
ward the east from due north. How far east and north is the
airplane from the airport when sighted?

Additional examples, video, and practice available at WileyPLUS

Figure 3-10 A plane takes off from an airport at the origin and is
later sighted at P.

21
5 
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x
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0
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D
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n
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) 
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P
d

order, because their vector sum is the same for any order.
(Recall from Eq. 3-2 that vectors commute.) The order
shown in Fig. 3-9b is for the vector sum

Using the scale given in Fig. 3-9a, we measure the length d of
this vector sum, finding

d � 4.8 m. (Answer)

d
:

� b
:

� a: � (�c:).

Sample Problem 3.01 Adding vectors in a drawing, orienteering

In an orienteering class, you have the goal of moving as far
(straight-line distance) from base camp as possible by
making three straight-line moves. You may use the follow-
ing displacements in any order: (a) , 2.0 km due east 
(directly toward the east); (b) , 2.0 km 30° north of east
(at an angle of 30° toward the north from due east);
(c) , 1.0 km due west. Alternatively, you may substitute
either for or for . What is the greatest distance
you can be from base camp at the end of the third displace-
ment? (We are not concerned about the direction.)

Reasoning: Using a convenient scale, we draw vectors ,
, , , and as in Fig. 3-9a. We then mentally slide the

vectors over the page, connecting three of them at a time
in head-to-tail arrangements to find their vector sum .
The tail of the first vector represents base camp. The head
of the third vector represents the point at which you stop.
The vector sum extends from the tail of the first vector
to the head of the third vector. Its magnitude d is your dis-
tance from base camp. Our goal here is to maximize that
base-camp distance.

We find that distance d is greatest for a head-to-tail
arrangement of vectors , , and . They can be in any�c:b

:
a:

d
:

d
:

�c:�b
:

c:b
:

a:

c:�c:b
:

�b
:

c:

b
:

a:

Figure 3-9 (a) Displacement vectors; three are to be used. (b) Your
distance from base camp is greatest if you undergo 
displacements , , and , in any order.�c:b

:
a:

30°

0 1 

Scale of km 

2

d = b + a – c

(a) (b)

a

a

c

b b
–b

–c

–c

This is the vector result
for adding those three
vectors in any order.
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the x axis. If it is measured relative to some other direc-
tion, then the trig functions in Eq. 3-5 may have to be in-
terchanged and the ratio in Eq. 3-6 may have to be
inverted. A safer method is to convert the angle to one
measured from the positive direction of the x axis. In
WileyPLUS, the system expects you to report an angle of
direction like this (and positive if counterclockwise and
negative if clockwise).

Problem-Solving Tactics Angles, trig functions, and inverse trig functions

Tactic 1: Angles—Degrees and Radians Angles that are
measured relative to the positive direction of the x axis are
positive if they are measured in the counterclockwise direc-
tion and negative if measured clockwise. For example, 210°
and �150° are the same angle.

Angles may be measured in degrees or radians (rad).To
relate the two measures, recall that a full circle is 360° and
2p rad.To convert, say, 40° to radians, write

Tactic 2: Trig Functions You need to know the definitions
of the common trigonometric functions—sine, cosine, and
tangent—because they are part of the language of science
and engineering. They are given in Fig. 3-11 in a form that
does not depend on how the triangle is labeled.

You should also be able to sketch how the trig functions
vary with angle, as in Fig. 3-12, in order to be able to judge
whether a calculator result is reasonable. Even knowing
the signs of the functions in the various quadrants can be
of help.

Tactic 3: Inverse Trig Functions When the inverse trig
functions sin�1, cos�1, and tan�1 are taken on a calculator,
you must consider the reasonableness of the answer you
get, because there is usually another possible answer that
the calculator does not give. The range of operation for a
calculator in taking each inverse trig function is indicated
in Fig. 3-12. As an example, sin�1 0.5 has associated angles
of 30° (which is displayed by the calculator, since 30° falls
within its range of operation) and 150°. To see both values,
draw a horizontal line through 0.5 in Fig. 3-12a and note
where it cuts the sine curve. How do you distinguish a cor-
rect answer? It is the one that seems more reasonable for
the given situation.

Tactic 4: Measuring Vector Angles The equations for 
cos u and sin u in Eq. 3-5 and for tan u in Eq. 3-6 are valid
only if the angle is measured from the positive direction of

40�
2
 rad

360�
� 0.70 rad.

Figure 3-11 A triangle used to define the trigonometric 
functions. See also Appendix E.

θ 

Hypotenuse

Leg adjacent to θ 

Leg
opposite θ 

sin θ 
leg opposite θ 
hypotenuse=

cos θ hypotenuse=
leg adjacent to θ 

tan θ = leg adjacent to θ 
leg opposite θ 
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Additional examples, video, and practice available at WileyPLUS

Figure 3-12 Three useful curves to remember. A calculator’s range
of operation for taking inverse trig functions is indicated by the
darker portions of the colored curves.
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90° 270°–90°

+1

+2

–1
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3-2 UNIT VECTORS, ADDING VECTORS BY COMPONENTS

After reading this module, you should be able to . . .

3.06 Convert a vector between magnitude-angle and unit-
vector notations.

3.07 Add and subtract vectors in magnitude-angle notation
and in unit-vector notation.

3.08 Identify that, for a given vector, rotating the coordinate
system about the origin can change the vector’s compo-
nents but not the vector itself.

● Unit vectors , , and have magnitudes of unity and are 
directed in the positive directions of the x, y, and z axes,
respectively, in a right-handed coordinate system. We can
write a vector in terms of unit vectors as

� axî � ayĵ � azk̂ ,a:
a:

k̂ ĵ î in which , , and are the vector components of and
ax, ay, and az are its scalar components.

● To add vectors in component form, we use the rules

rx � ax � bx ry � ay � by rz � az � bz.

Here and are the vectors to be added, and is the vector
sum. Note that we add components axis by axis.

r:b
:

a:

a:azk̂ayĵaxî

Learning Objectives

Key Ideas

ˆ

ˆ

y

x
O axi

ay j

θ

(a)

a bx î

ˆ

θ O x

y

by j

(b)

b

This is the x vector
component.

This is the y vector component.

Figure 3-14 (a) The vector components
of vector . (b) The vector components
of vector .b

:
a:

Unit Vectors
A unit vector is a vector that has a magnitude of exactly 1 and points in a particu-
lar direction. It lacks both dimension and unit. Its sole purpose is to point—that
is, to specify a direction. The unit vectors in the positive directions of the x, y, and
z axes are labeled , , and , where the hat is used instead of an overhead arrow
as for other vectors (Fig. 3-13).The arrangement of axes in Fig. 3-13 is said to be a
right-handed coordinate system. The system remains right-handed if it is rotated
rigidly.We use such coordinate systems exclusively in this book.

Unit vectors are very useful for expressing other vectors; for example, we can
express and of Figs. 3-7 and 3-8 as

(3-7)

and . (3-8)

These two equations are illustrated in Fig. 3-14.The quantities ax and ay are vec-
tors, called the vector components of .The quantities ax and ay are scalars, called
the scalar components of (or, as before, simply its components).a:

a:
ĵî

b
:

� bxî � by ĵ

a: � axî � ay ĵ

b
:

a:

ˆk̂ĵî

Adding Vectors by Components
We can add vectors geometrically on a sketch or directly on a vector-capable
calculator.A third way is to combine their components axis by axis.

Figure 3.13 Unit vectors î, , and define the
directions of a right-handed coordinate
system.

k̂ĵ

y

x

z

ĵ

îk̂

The unit vectors point
along axes.
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To start, consider the statement

, (3-9)

which says that the vector is the same as the vector . Thus, each 
component of must be the same as the corresponding component of :

rx � ax � bx (3-10)

ry � ay � by (3-11)

rz � az � bz. (3-12)

In other words, two vectors must be equal if their corresponding components are
equal. Equations 3-9 to 3-12 tell us that to add vectors and , we must (1) re-
solve the vectors into their scalar components; (2) combine these scalar compo-
nents, axis by axis, to get the components of the sum ; and (3) combine
the components of to get itself. We have a choice in step 3. We can express 
in unit-vector notation or in magnitude-angle notation.

This procedure for adding vectors by components also applies to vector 
subtractions. Recall that a subtraction such as can be rewritten as an
addition .To subtract, we add and by components, to get

dx � ax � bx, dy � ay � by, and dz � az � bz,

where . (3-13)d
:

� dxî � dyĵ � dzk̂

�b
:

a:d
:

� a: � (�b
:

)
d
:

� a: � b
:

r:r:r:
r:

b
:

a:

(a: � b
:

)r:
(a: � b

:
)r:

r: � a: � b
:

Checkpoint 3
(a) In the figure here, what are the signs of the x
components of and ? (b) What are the signs of
the y components of and ? (c) What are thed2

:
d1
:
d2
:

d1
:

y

x

d2
d1

3-2 UNIT VECTORS, ADDING VECTORS BY COMPONENTS

Vectors and the Laws of Physics
So far, in every figure that includes a coordinate system, the x and y axes are par-
allel to the edges of the book page. Thus, when a vector is included, its compo-
nents ax and ay are also parallel to the edges (as in Fig. 3-15a).The only reason for
that orientation of the axes is that it looks “proper”; there is no deeper reason.
We could, instead, rotate the axes (but not the vector ) through an angle f as ina:

a:

Figure 3-15 (a) The vector and its 
components. (b) The same vector, with the
axes of the coordinate system rotated
through an angle f.

a:

a

y

xax

ay

θ

(a)

O

a

y

x

a'x
x'

(b)

θ
a'y

φ
O

y'

'

Rotating the axes
changes the components
but not the vector.

Fig. 3-15b, in which case the components would have new values, call them a�x and
a�y. Since there are an infinite number of choices of f, there are an infinite num-
ber of different pairs of components for .

Which then is the “right” pair of components? The answer is that they are all
equally valid because each pair (with its axes) just gives us a different way of de-
scribing the same vector ; all produce the same magnitude and direction for the
vector. In Fig. 3-15 we have

(3-14)
and

u � u� � f. (3-15)

The point is that we have great freedom in choosing a coordinate system, be-
cause the relations among vectors do not depend on the location of the origin or
on the orientation of the axes.This is also true of the relations of physics; they are
all independent of the choice of coordinate system.Add to that the simplicity and
richness of the language of vectors and you can see why the laws of physics are 
almost always presented in that language: one equation, like Eq. 3-9, can repre-
sent three (or even more) relations, like Eqs. 3-10, 3-11, and 3-12.

a � 2a2
x � a2

y � 2a�2
x � a�2

y

a:

a:

signs of the x and y components of � ?d2
:

d1
:
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Calculations: To evaluate Eqs. 3-16 and 3-17, we find the x and
y components of each displacement. As an example, the com-
ponents for the first displacement are shown in Fig. 3-16c. We
draw similar diagrams for the other two displacements and
then we apply the x part of Eq. 3-5 to each displacement, using
angles relative to the positive direction of the x axis:

dlx � (6.00 m) cos 40° � 4.60 m 

d2x � (8.00 m) cos (�60°) � 4.00 m 

d3x � (5.00 m) cos 0° � 5.00 m.

Equation 3-16 then gives us

dnet, x � �4.60 m � 4.00 m � 5.00 m

� 13.60 m.

Similarly, to evaluate Eq. 3-17, we apply the y part of Eq. 3-5
to each displacement:

dly � (6.00 m) sin 40° = 3.86 m

d2y � (8.00 m) sin (�60°) = �6.93 m

d3y � (5.00 m) sin 0° � 0 m.

Equation 3-17 then gives us

dnet, y � �3.86 m � 6.93 m � 0 m

� �3.07 m.

Next we use these components of net to construct the vec-
tor as shown in Fig. 3-16d: the components are in a head-to-
tail arrangement and form the legs of a right triangle, and

d
:

Sample Problem 3.03 Searching through a hedge maze

A hedge maze is a maze formed by tall rows of hedge.
After entering, you search for the center point and then
for the exit. Figure 3-16a shows the entrance to such a
maze and the first two choices we make at the junctions
we encounter in moving from point i to point c. We un-
dergo three displacements as indicated in the overhead
view of Fig. 3-16b:

d1 � 6.00 m �1 � 40°

d2 � 8.00 m �2 � 30°

d3 � 5.00 m �3 � 0°,

where the last segment is parallel to the superimposed
x axis. When we reach point c, what are the magnitude and
angle of our net displacement net from point i?

KEY IDEAS

(1) To find the net displacement net, we need to sum the
three individual displacement vectors:

net � 1 � 2 � 3.

(2) To do this, we first evaluate this sum for the x compo-
nents alone,

dnet,x � dlx � d2x � d3x, (3-16)

and then the y components alone,

dnet,y � d1y � d2y � d3y. (3-17)

(3) Finally, we construct net from its x and y components.d
:

d
:

d
:

d
:

d
:

d
:

d
:

Figure 3-16 (a) Three displacements through a hedge maze. (b) The displacement vectors. (c) The first displacement vector and its
components. (d) The net displacement vector and its components.

(a)

y

x

d1y

d1x

(c)

a

b
c

i (b)

y

x

a

b
c

i
u1

u2

y

x
dnet,x

dnet,y

c

(d)

d1 d2

d3

d1

i

dnet

Three
vectors

First
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Net
vector
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the vector forms the hypotenuse.We find the magnitude and
angle of net with Eq. 3-6. The magnitude is

dnet � (3-18)

� � 13.9 m. (Answer)

To find the angle (measured from the positive direction of x),
we take an inverse tangent:

� � tan�1 (3-19)

� tan�1 � �12.7°. (Answer)

The angle is negative because it is measured clockwise from
positive x. We must always be alert when we take an inverse

� –3.07 m
13.60 m �

� dnet,y

dnet,x
�

2(13.60 m)2 � (�3.07 m)2

2d2
net,x � d2

net,y

d
:

tangent on a calculator. The answer it displays is mathe-
matically correct but it may not be the correct answer for
the physical situation. In those cases, we have to add 180°
to the displayed answer, to reverse the vector. To check,
we always need to draw the vector and its components as
we did in Fig. 3-16d. In our physical situation, the figure
shows us that � � �12.7° is a reasonable answer, whereas
�12.7° � 180° � 167° is clearly not.

We can see all this on the graph of tangent versus angle
in Fig. 3-12c. In our maze problem, the argument of the in-
verse tangent is �3.07/13.60, or �0.226. On the graph draw
a horizontal line through that value on the vertical axis. The
line cuts through the darker plotted branch at �12.7° and
also through the lighter branch at 167°. The first cut is what
a calculator displays.

3-2 UNIT VECTORS, ADDING VECTORS BY COMPONENTS

KEY IDEA

We can add the three vectors by components, axis by axis,
and then combine the components to write the vector
sum .

Calculations: For the x axis, we add the x components of 
and to get the x component of the vector sum :

rx � ax � bx � cx

� 4.2 m � 1.6 m � 0 � 2.6 m.

Similarly, for the y axis,

ry � ay � by � cy

� �1.5 m � 2.9 m � 3.7 m � �2.3 m.

We then combine these components of to write the vector
in unit-vector notation:

(Answer)

where (2.6 m)î is the vector component of along the x axis
and (2.3 m)ĵ is that along the y axis. Figure 3-17b shows
one way to arrange these vector components to form .
(Can you sketch the other way?)

We can also answer the question by giving the magnitude
and an angle for .From Eq.3-6, the magnitude is

(Answer)

and the angle (measured from the �x direction) is

(Answer)

where the minus sign means clockwise.

� � tan�1 � �2.3 m
2.6 m � � �41�,

r � 2(2.6 m)2 � (�2.3 m)2 � 3.5 m

r:

r:
�

r:

r: � (2.6 m)î � (2.3 m)ĵ,

r:

r:c:,b
:

,
a:,

r:

Sample Problem 3.04 Adding vectors, unit-vector components

Figure 3-17a shows the following three vectors:

and

What is their vector sum which is also shown?r:
c: � (�3.7 m)ĵ.

b
:

� (�1.6 m)î � (2.9 m)ĵ,

a: � (4.2 m)î � (1.5 m)ĵ,

Additional examples, video, and practice available at WileyPLUS
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y
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–3

–2

–1

1

x

y

–1 3 4 –2–3 2 
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–1

2

3

1

1

(a)

2.6i

(b)

r

r

a

c

b

ˆ

–2.3ĵ

To add these vectors,
find their net x component
and their net y component.

Then arrange the net
components head to tail.

This is the result of the addition.

Figure 3-17 Vector is the vector sum of the other three vectors.r:
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Multiplying Vectors*
There are three ways in which vectors can be multiplied, but none is exactly like
the usual algebraic multiplication. As you read this material, keep in mind that a
vector-capable calculator will help you multiply vectors only if you understand
the basic rules of that multiplication.

Multiplying a Vector by a Scalar
If we multiply a vector by a scalar s, we get a new vector. Its magnitude is
the product of the magnitude of and the absolute value of s. Its direction is the
direction of if s is positive but the opposite direction if s is negative. To divide 
by s, we multiply by 1/s.

Multiplying a Vector by a Vector
There are two ways to multiply a vector by a vector: one way produces a scalar
(called the scalar product), and the other produces a new vector (called the vector
product). (Students commonly confuse the two ways.) 

a:
a:a:

a:
a:

Key Ideas
● The vector (or cross) product of two vectors and is 
written � and is a vector whose magnitude c is given by

c � ab sin �,

in which � is the smaller of the angles between the directions
of and . The direction of is perpendicular to the plane 
defined by and and is given by a right-hand rule, as shown
in Fig. 3-19. Note that � � �( � ). In unit-vector
notation,

� � �

which we may expand with the distributive law.

● In nested products, where one product is buried inside an-
other, follow the normal algebraic procedure by starting with
the innermost product and working outward.

(bxî � byĵ � bzk̂ ),(axî � ayĵ � azk̂ )b
:

a:

a:b
:

b
:

a:
b
:

a:
c:b

:
a:

c:b
:

a:
b
:

a:

*This material will not be employed until later (Chapter 7 for scalar products and Chapter 11 for vec-
tor products), and so your instructor may wish to postpone it.

● The product of a scalar s and a vector is a new vector
whose magnitude is and whose direction is the same as
that of if s is positive, and opposite that of if s is negative.
To divide by s, multiply by 1/s.

● The scalar (or dot) product of two vectors and is writ-
ten � and is the scalar quantity given by

� � ab cos �,

in which � is the angle between the directions of and .
A scalar product is the product of the magnitude of one vec-
tor and the scalar component of the second vector along the
direction of the first vector. In unit-vector notation,

� � �

which may be expanded according to the distributive law.
Note that � � � .a:b

:
b
:

a:

(bxî � byĵ � bzk̂ ),(axî � ayĵ � azk̂ )b
:

a:

b
:

a:
b
:

a:
b
:

a:
b
:

a:
v:v:

v:v:
sv

v:

3-3 MULTIPLYING VECTORS 
Learning Objectives

3.13 Given two vectors, use a dot product to find how much
of one vector lies along the other vector.

3.14 Find the cross product of two vectors in magnitude-
angle and unit-vector notations.

3.15 Use the right-hand rule to find the direction of the vector
that results from a cross product.

3.16 In nested products, where one product is buried inside
another, follow the normal algebraic procedure by starting
with the innermost product and working outward.

After reading this module, you should be able to . . .

3.09 Multiply vectors by scalars.
3.10 Identify that multiplying a vector by a scalar gives a vec-

tor, taking the dot (or scalar) product of two vectors gives a
scalar, and taking the cross (or vector) product gives a new
vector that is perpendicular to the original two.

3.11 Find the dot product of two vectors in magnitude-angle
notation and in unit-vector notation.

3.12 Find the angle between two vectors by taking their dot prod-
uct in both magnitude-angle notation and unit-vector notation.
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If the angle between two vectors is 0°, the component of one vector along the
other is maximum, and so also is the dot product of the vectors. If, instead, is 90°,
the component of one vector along the other is zero, and so is the dot product.

�
�

The Scalar Product
The scalar product of the vectors and in Fig. 3-18a is written as and
defined to be

� ab cos f, (3-20)

where a is the magnitude of , b is the magnitude of , and is the angle between
and (or, more properly, between the directions of and ).There are actually

two such angles: and 360° . Either can be used in Eq. 3-20, because their
cosines are the same.

Note that there are only scalars on the right side of Eq. 3-20 (including the
value of cos ). Thus on the left side represents a scalar quantity. Because of
the notation, is also known as the dot product and is spoken as “a dot b.”

A dot product can be regarded as the product of two quantities: (1) the mag-
nitude of one of the vectors and (2) the scalar component of the second vector
along the direction of the first vector. For example, in Fig. 3-18b, has a scalar
component a cos along the direction of ; note that a perpendicular dropped
from the head of onto determines that component. Similarly, has a scalar
component b cos along the direction of .a:�

b
:

b
:

a:
b
:

�
a:

b
:

a: �
b
:

a: ��

� ��
b
:

a:b
:

a:
�b

:
a:

a: � b
:

a: � b
:

b
:

a:
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Figure 3-18 (a) Two vectors 
and , with an angle f between
them. (b) Each vector has a
component along the direction
of the other vector.

b
:

a:

a

a

b

b
φ 

(a)

(b)

Component of b
along direction of 

a is b cos φ 

Component of a

along direction of 

b is a cos φ 

φ 

Multiplying these gives
the dot product.

Or multiplying these
gives the dot product.

Equation 3-20 can be rewritten as follows to emphasize the components:

� � (a cos f)(b) � (a)(b cos f). (3-21)

The commutative law applies to a scalar product, so we can write

� � � .

When two vectors are in unit-vector notation, we write their dot product as

� � (ax � ay � az ) �(bx � by � bz ), (3-22)

which we can expand according to the distributive law: Each vector component
of the first vector is to be dotted with each vector component of the second vec-
tor. By doing so, we can show that

� � axbx � ayby � azbz. (3-23)b
:

a:

k̂ĵîk̂ĵîb
:

a:

a:b
:

b
:

a:

b
:

a:
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If and are parallel or antiparallel, � � 0. The magnitude of � , which can
be written as , is maximum when and are perpendicular to each other.b

:
a:�a: � b

:
�

b
:

a:b
:

a:b
:

a:

where f is the smaller of the two angles between and . (You must use theb
:

a:

The direction of is perpendicular to the plane that contains and .b
:

a:c:

Checkpoint 4
Vectors and have magnitudes of 3 units and 4 units, respectively.What is the
angle between the directions of and if equals (a) zero, (b) 12 units, and 
(c) 12 units?�

D
:

C
:

�D
:

C
:

D
:

C
:

The Vector Product
The vector product of and , written � , produces a third vector whose
magnitude is

c � ab sin f, (3-24)

c:b
:

a:b
:

a:

them is 90°.) Also, we used the right-hand rule to get the direction of � as
being in the positive direction of the z axis (thus in the direction of ).k̂

ĵî

smaller of the two angles between the vectors because sin f and sin(360° � f)
differ in algebraic sign.) Because of the notation, � is also known as the cross
product, and in speech it is “a cross b.”

b
:

a:

Figure 3-19a shows how to determine the direction of � � with what is
known as a right-hand rule. Place the vectors and tail to tail without altering
their orientations, and imagine a line that is perpendicular to their plane where
they meet. Pretend to place your right hand around that line in such a way that
your fingers would sweep into through the smaller angle between them.Your
outstretched thumb points in the direction of .

The order of the vector multiplication is important. In Fig. 3-19b, we are
determining the direction of , so the fingers are placed to sweep 
into through the smaller angle. The thumb ends up in the opposite direction
from previously, and so it must be that ; that is,

. (3-25)

In other words, the commutative law does not apply to a vector product.
In unit-vector notation, we write

� � (ax � ay � az ) � (bx � by � bz ), (3-26)

which can be expanded according to the distributive law; that is, each component
of the first vector is to be crossed with each component of the second vector. The
cross products of unit vectors are given in Appendix E (see “Products of
Vectors”). For example, in the expansion of Eq. 3-26, we have

ax � bx � axbx( � ) � 0,

because the two unit vectors and are parallel and thus have a zero cross prod-
uct. Similarly, we have

ax � by � axby( � ) � axby .

In the last step we used Eq. 3-24 to evaluate the magnitude of � as unity.
(These vectors and each have a magnitude of unity, and the angle betweenĵî

ĵî

k̂ĵîĵî

îî

îîîî

k̂ĵîk̂ĵîb
:

a:

b
:

� a: � �(a: � b
:

)

c�: � �c:
a:

b
:

c�: � b
:

� a:

c:
b
:

a:

b
:

a:
b
:

a:c:
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Continuing to expand Eq. 3-26, you can show that

� � (aybz � byaz) � (azbx � bzax) � (axby � bxay) . (3-27)

A determinant (Appendix E) or a vector-capable calculator can also be used.
To check whether any xyz coordinate system is a right-handed coordinate

system, use the right-hand rule for the cross product � � with that system. If
your fingers sweep (positive direction of x) into (positive direction of y) with
the outstretched thumb pointing in the positive direction of z (not the negative
direction), then the system is right-handed.

ĵî
k̂ĵî

k̂ĵîb
:

a:

Checkpoint 5
Vectors and have magnitudes of 3 units and 4 units, respectively.What is the an-
gle between the directions of  and  if the magnitude of the vector product 
is (a) zero and (b) 12 units?

D
:

C
:

�D
:

C
:

D
:

C
:

Figure 3-19 Illustration of the right-hand rule for vector products. (a) Sweep vector into vector with the fingers of your right hand.
Your outstretched thumb shows the direction of vector . (b) Showing that is the reverse of .a: � b

:
b
:

� a:c: � a: � b
:

b
:

a:

a

b b b

c

a

b

a a

(a)

(b)

c �

A
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gives the direction of .Thus, as shown in the figure, lies in
the xy plane. Because its direction is perpendicular to the
direction of (a cross product always gives a perpendicular
vector), it is at an angle of

250° � 90° � 160° (Answer)

from the positive direction of the x axis.

a:

c:c:

Sample Problem 3.06 Cross product, right-hand rule

In Fig. 3-20, vector lies in the xy plane, has a magnitude of
18 units, and points in a direction 250° from the positive di-
rection of the x axis. Also, vector has a magnitude of
12 units and points in the positive direction of the z axis.What
is the vector product � � ?

KEY IDEA

When we have two vectors in magnitude-angle notation, we
find the magnitude of their cross product with Eq. 3-24 and
the direction of their cross product with the right-hand rule
of Fig. 3-19.

Calculations: For the magnitude we write

c � ab sin f � (18)(12)(sin 90°) � 216. (Answer)

To determine the direction in Fig. 3-20, imagine placing the
fingers of your right hand around a line perpendicular to the
plane of and (the line on which is shown) such that
your fingers sweep into . Your outstretched thumb thenb

:
a:

c:b
:

a:

b
:

a:c:

b
:

a:

Figure 3-20 Vector (in the xy plane) is the vector (or cross) 
product of vectors and .b

:
a:

c:

z

250° 
160° 

yx

a b
c = a b

This is the resulting
vector, perpendicular to
both a and b.

Sweep a into b.

Calculations: Here we write

� (3 � 4 ) � (�2 � 3 )

� 3 � (�2 ) � 3 � 3 � (�4 ) � (�2 )

� (�4 ) � 3 .k̂ĵ

îĵk̂îîî

k̂îĵîc:

Sample Problem 3.07 Cross product, unit-vector notation

If � 3 � 4 and � �2 � 3 , what is � � ?

KEY IDEA

When two vectors are in unit-vector notation, we can find
their cross product by using the distributive law.

b
:

a:c:k̂îb
:

ĵîa:

We can separately evaluate the left side of Eq. 3-28 by
writing the vectors in unit-vector notation and using the
distributive law:

� � (3.0 � 4.0 ) �(�2.0 � 3.0 )

� (3.0 ) �(�2.0 ) � (3.0 ) �(3.0 )

� (�4.0 ) �(�2.0 ) � (�4.0 ) �(3.0 ).

We next apply Eq. 3-20 to each term in this last expression.
The angle between the unit vectors in the first term ( and ) is
0°, and in the other terms it is 90°.We then have

� � �(6.0)(1) � (9.0)(0) � (8.0)(0) � (12)(0)
� �6.0.

Substituting this result and the results of Eqs. 3-29 and 3-30
into Eq. 3-28 yields

�6.0 � (5.00)(3.61) cos f,

so (Answer)� � cos�1 �6.0
(5.00)(3.61)

� 109� �110�.

b
:

a:

îî

k̂ĵîĵ

k̂îîî

k̂îĵîb
:

a:

Sample Problem 3.05 Angle between two vectors using dot products

What is the angle between 3.0 4.0 and 
2.0 3.0 ? (Caution: Although many of the following

steps can be bypassed with a vector-capable calculator, you
will learn more about scalar products if, at least here, you
use these steps.)

KEY IDEA 

The angle between the directions of two vectors is included
in the definition of their scalar product (Eq. 3-20):

� � ab cos f. (3-28)

Calculations: In Eq. 3-28, a is the magnitude of , or

(3-29)

and b is the magnitude of , or

(3-30)b � 2(�2.0)2 �  3.02 � 3.61.

b
:

a �23.02 � (�4.0)2 � 5.00,

a:

b
:

a:

k̂î ��
b
:

�ĵî �a: ��



55REVIEW & SUMMARY

Scalars and Vectors Scalars, such as temperature, have magni-
tude only. They are specified by a number with a unit (10°C) and
obey the rules of arithmetic and ordinary algebra. Vectors, such as
displacement, have both magnitude and direction (5 m, north) and
obey the rules of vector algebra.

Adding Vectors Geometrically Two vectors and may 
be added geometrically by drawing them to a common scale 
and placing them head to tail. The vector connecting the tail of
the first to the head of the second is the vector sum . To
subtract from , reverse the direction of to get � ; then 
add � to  . Vector addition is commutative

and obeys the associative law

.

Components of a Vector The (scalar) components ax and ay of
any two-dimensional vector along the coordinate axes are found
by dropping perpendicular lines from the ends of onto the coor-
dinate axes.The components are given by

ax � a cos u and ay � a sin u, (3-5)

where u is the angle between the positive direction of the x axis
and the direction of . The algebraic sign of a component indi-
cates its direction along the associated axis. Given its compo-
nents, we can find the magnitude and orientation (direction) of
the vector by using

and      

Unit-Vector Notation Unit vectors , , and have magnitudes of
unity and are directed in the positive directions of the x, y, and z
axes, respectively, in a right-handed coordinate system (as defined
by the vector products of the unit vectors). We can write a vector 
in terms of unit vectors as

� ax � ay � az , (3-7)

in which ax , ay , and az are the vector components of and ax, ay,
and az are its scalar components.

a:k̂ĵî

k̂ĵîa:

a:

k̂ĵî

a � 2a2
x � a2

y

a:

a:

a:
a:

(a: � b
:

) � c: � a: � (b
:

� c:)

a: � b
:

� b
:

� a:

a:b
:

b
:

b
:

a:b
:

s:

b
:

a:

Review & Summary

Adding Vectors in Component Form To add vectors in com-
ponent form, we use the rules

rx � ax � bx ry � ay � by rz � az � bz. (3-10 to 3-12)

Here and are the vectors to be added, and is the vector sum.
Note that we add components axis by axis.We can then express the
sum in unit-vector notation or magnitude-angle notation.

Product of a Scalar and a Vector The product of a scalar s and
a vector is a new vector whose magnitude is sv and whose direc-
tion is the same as that of if s is positive, and opposite that of if
s is negative. (The negative sign reverses the vector.) To divide by
s, multiply by 1/s.

The Scalar Product The scalar (or dot) product of two vectors 
and is written � and is the scalar quantity given by

� � ab cos f, (3-20)

in which f is the angle between the directions of and . A scalar
product is the product of the magnitude of one vector and the
scalar component of the second vector along the direction of the
first vector. Note that � � � which means that the scalar
product obeys the commutative law.

In unit-vector notation,

� � (ax � ay � az ) �(bx � by � bz ), (3-22)

which may be expanded according to the distributive law.

The Vector Product The vector (or cross) product of two vectors
and is written � and is a vector whose magnitude c is

given by
c � ab sin f, (3-24)

in which f is the smaller of the angles between the directions of 
and . The direction of is perpendicular to the plane 
defined by and and is given by a right-hand rule, as shown in
Fig. 3-19. Note that � � �( � ), which means that the vec-
tor product does not obey the commutative law.

In unit-vector notation,

� � (ax � ay � az ) � (bx � by � bz ), (3-26)

which we may expand with the distributive law.

k̂ĵîk̂ĵîb
:

a:

a:b
:

b
:

a:
b
:

a:
c:b

:
a:

c:b
:

a:b
:

a:

k̂ĵîk̂ĵîb
:

a:

a:,b
:

b
:

a:

b
:

a:

b
:

a:

b
:

a:b
:

a:

v:
v:
v:v:

v:

r:b
:

a:

Additional examples, video, and practice available at WileyPLUS

We next evaluate each term with Eq. 3-24, finding the
direction with the right-hand rule. For the first term here,
the angle f between the two vectors being crossed is 0. For
the other terms,f is 90°.We find

� �6(0) � 9(� ) � 8(� ) � 12

� �12 � 9 � 8 . (Answer)k̂ĵî

îk̂ĵc:

This vector is perpendicular to both and , a fact youb
:

a:c:

can check by showing that � = 0 and � = 0; that is, there
is no component of along the direction of either or .

In general: A cross product gives a perpendicular
vector, two perpendicular vectors have a zero dot prod-
uct, and two vectors along the same axis have a zero
cross product.

b
:

a:c:
b
:

c:a:c:

(3-2)

(3-3)

tan � �
ay

ax
(3-6)
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10 Figure 3-25 shows vector and
four other vectors that have the same
magnitude but differ in orientation.
(a) Which of those other four vectors
have the same dot product with ? (b)
Which have a negative dot product
with ?

11 In a game held within a three-
dimensional maze, you must move
your game piece from start, at xyz co-
ordinates (0, 0, 0), to finish, at coordinates (�2 cm, 4 cm, �4 cm).
The game piece can undergo only the displacements (in centime-
ters) given below. If, along the way, the game piece lands at coordi-
nates (�5 cm, �1 cm, �1 cm) or (5 cm, 2 cm, �1 cm), you lose the
game. Which displacements and in what sequence will get your
game piece to finish?

� �7 � 2 � 3 � 2 � 3 � 2

� 2 � � 4 � 3 � 5 � 3 .

12 The x and y components of four vectors , , , and are given
below. For which vectors will your calculator give you the correct an-
gle u when you use it to find u with Eq. 3-6? Answer first by examin-
ing Fig. 3-12, and then check your answers with your calculator.

ax � 3 ay � 3 cx � �3 cy � �3

bx � �3 by � 3 dx � 3 dy � �3.

13 Which of the following are correct (meaningful) vector 
expressions? What is wrong with any incorrect expression?

(a) � ( � ) (f) � ( � )

(b) � ( � ) (g) 5 �

(c) � ( � ) (h) 5 � ( � )

(d) � ( � ) (i) 5 � ( � )

(e) � ( � ) (j) ( � ) � ( � )C
:

B
:

B
:

A
:

C
:

B
:

A
:

C
:

B
:

C
:

B
:

A
:

C
:

B
:

C
:

B
:

A
:

A
:

C
:

B
:

A
:

C
:

B
:

A
:

C
:

B
:

A
:

d
:

c:b
:

a:

k̂ĵîs:k̂ĵîq:
k̂ĵîr:k̂ĵîp:

A
:

A
:

A
:

B

A

C
E

D

θ 
θ 

θ 
θ 

Figure 3-25 Question 10.
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yyy
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Figure 3-24 Question 9.

Figure 3-23 Question 5.

Questions

1 Can the sum of the magnitudes
of two vectors ever be equal to the
magnitude of the sum of the same
two vectors? If no, why not? If yes,
when?

2 The two vectors shown in Fig. 3-21
lie in an xy plane. What are the signs
of the x and y components, respec-
tively, of (a) , (b) , and
(c) ?

3 Being part of the “Gators,” the
University of Florida golfing team
must play on a putting green with an
alligator pit. Figure 3-22 shows an
overhead view of one putting chal-
lenge of the team; an xy coordinate
system is superimposed. Team mem-
bers must putt from the origin to the
hole, which is at xy coordinates (8 m,
12 m), but they can putt the golf ball
using only one or more of the fol-
lowing displacements, one or more
times:

, .

The pit is at coordinates (8 m, 6 m). If a team member putts the
ball into or through the pit, the member is automatically trans-
ferred to Florida State University, the arch rival. What sequence
of displacements should a team member use to avoid the pit and
the school transfer?

4 Equation 3-2 shows that the addition of two vectors and is
commutative. Does that mean subtraction is commutative, so that

� � � ?

5 Which of the arrangements of axes in Fig. 3-23 can be labeled
“right-handed coordinate system”? As usual, each axis label indi-
cates the positive side of the axis.

a:b
:

b
:

a:

b
:

a:

d3
:

� (8 m)îd2
:

� (6 m)ĵ,d
1

:
� (8 m)î � (6 m)ĵ

d2
:

� d1
:

d1
:

� d2
:

d1
:

� d2
:

6 Describe two vectors and such that

(a) � � and a � b � c;

(b) � � � ;

(c) � � and a2 � b2 � c2.

7 If � � � (� ), does (a) � (� ) � � (� ), (b) �
(� ) � � , and (c) � (� ) � � ?

8 If � � � , must equal ?

9 If � q( � ) and is perpendicular to , then what is the
direction of in the three situations shown in Fig. 3-24 when con-
stant q is (a) positive and (b) negative?

B
:

B
:

v:B
:

v:F
:

c:b
:

c:a:b
:

a:
b
:

a:d
:

c:c:d
:

b
:

a:b
:

c:d
:

a:c:b
:

a:d
:

c:b
:

a:
b
:

a:b
:

a:
c:b

:
a:

b
:

a:y

x

d2

d1

Figure 3-21 Question 2.
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x

Figure 3-22 Question 3.
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tors and in Fig. 3-28 have equal
magnitudes of 10.0 m and the angles
are 30° and 105°. Find the
(a) x and (b) y components of their
vector sum , (c) the magnitude of ,
and (d) the angle makes with the
positive direction of the x axis.

•16 For the displacement vectors
and

, give in
(a) unit-vector notation, and as (b) a
magnitude and (c) an angle (rela-
tive to ). Now give in (d) unit-vector notation, and as (e) a
magnitude and (f) an angle.

•17 Three vectors , , and each have a magnitude of
50 m and lie in an xy plane. Their directions relative to the positive
direction of the x axis are 30°, 195°, and 315°, respectively.What are
(a) the magnitude and (b) the angle of the vector , and
(c) the magnitude and (d) the angle of ? What are the
(e) magnitude and (f) angle of a fourth vector such that

?

•18 In the sum , vector has a magnitude of 12.0 m
and is angled 40.0° counterclockwise from the direction, and vec-
tor has a magnitude of 15.0 m and is angled 20.0° counterclock-
wise from the direction. What are (a) the magnitude and (b) the
angle (relative to ) of ?

•19 In a game of lawn chess, where pieces are moved between
the centers of squares that are each 1.00 m on edge, a knight is
moved in the following way: (1) two squares forward, one square
rightward; (2) two squares leftward, one square forward; (3) two
squares forward, one square leftward. What are (a) the magnitude
and (b) the angle (relative to “forward”) of the knight’s overall dis-
placement for the series of three moves?

B
:

�x
�x

C
:

�x
A
:

A
:

� B
:

� C
:

(a: � b
:

) � (c: � d
:

) � 0
d
:

a: � b
:

� c:
a: � b

:
� c:

c:b
:

a:ILW

b
:

� a:î

a: � b
:

(5.0 m)î � (�2.0 m)ĵ
b
:

�a: � (3.0 m)î � (4.0 m)ĵ

r:
r:r:

�2 ��1 �

b
:

a:

Module 3-1 Vectors and Their Components
•1 What are (a) the x component and (b) the y component of a
vector in the xy plane if its direction is 250°
counterclockwise from the positive direction
of the x axis and its magnitude is 7.3 m?

•2 A displacement vector in the xy plane
is 15 m long and directed at angle u � 30° in
Fig. 3-26. Determine (a) the x component
and (b) the y component of the vector.

•3 The x component of vector is 
25.0 m and the y component is 40.0 m. (a) What is the magni-

tude of ? (b) What is the angle between the direction of and
the positive direction of x?

•4 Express the following angles in radians: (a) 20.0°, (b) 50.0°,
(c) 100°. Convert the following angles to degrees: (d) 0.330 rad,
(e) 2.10 rad, (f) 7.70 rad.

•5 A ship sets out to sail to a point 120 km due north. An unex-
pected storm blows the ship to a point 100 km due east of its 
starting point. (a) How far and (b) in what direction must it now
sail to reach its original destination?

•6 In Fig. 3-27, a heavy piece of 
machinery is raised by sliding it a 
distance d � 12.5 m along a plank
oriented at angle u � 20.0° to the
horizontal. How far is it moved 
(a) vertically and (b) horizontally?

•7 Consider two displacements,
one of magnitude 3 m and another
of magnitude 4 m. Show how the
displacement vectors may be combined to get a resultant displace-
ment of magnitude (a) 7 m, (b) 1 m, and (c) 5 m.

Module 3-2 Unit Vectors, Adding Vectors by Components
•8 A person walks in the following pattern: 3.1 km north, then
2.4 km west, and finally 5.2 km south. (a) Sketch the vector dia-
gram that represents this motion. (b) How far and (c) in what di-
rection would a bird fly in a straight line from the same starting
point to the same final point?

•9 Two vectors are given by

and .

In unit-vector notation, find (a) , (b) , and (c) a third
vector such that .

•10 Find the (a) x, (b) y, and (c) z components of the sum of
the displacements and whose components in meters are
cx 7.4, cy 3.8, cz 6.1; dx 4.4, dy 2.0, dz 3.3.

•11 (a) In unit-vector notation, what is the sum if 
(4.0 m) (3.0 m) and ( 13.0 m) (7.0 m) ? What

are the (b) magnitude and (c) direction of ?a: � b
:

ĵ�î��b
:

ĵ�î�a:
a: � b

:
SSM

�� ��� �� ��
d
:

c:
r:

a: � b
:

� c: � 0c:
a: � b

:
a: � b

:

b
:

� (�1.0 m)î � (1.0 m)ĵ � (4.0 m)k̂

a: � (4.0 m)î � (3.0 m)ĵ � (1.0 m)k̂

A
:

A
:

��
A
:

SSM

r:

a:
SSM

57PROBLEMS

θ 

d

Figure 3-27 Problem 6.

•12 A car is driven east for a distance of 50 km, then north for 30
km, and then in a direction 30° east of north for 25 km. Sketch the
vector diagram and determine (a) the magnitude and (b) the angle
of the car’s total displacement from its starting point.

•13 A person desires to reach a point that is 3.40 km from her
present location and in a direction that is 35.0° north of east.
However, she must travel along streets that are oriented either
north–south or east–west. What is the minimum distance she
could travel to reach her destination?

•14 You are to make four straight-line moves over a flat desert
floor, starting at the origin of an xy coordinate system and ending
at the xy coordinates (�140 m, 30 m). The x component and y
component of your moves are the following, respectively, in me-
ters: (20 and 60), then (bx and �70), then (�20 and cy), then (�60
and �70). What are (a) component bx and (b) component cy?
What are (c) the magnitude and (d) the angle (relative to the pos-
itive direction of the x axis) of the overall displacement?

•15 The two vec-WWWILWSSM

θ 
x

y

r

Figure 3-26
Problem 2.

θ 

O x

y

2

θ 1
a

b

Figure 3-28 Problem 15.

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

http://www.wiley.com/college/halliday
www.flyingcircusofphysics.com


•••32 In Fig. 3-31, a cube of edge
length a sits with one corner at the ori-
gin of an xyz coordinate system. A
body diagonal is a line that extends
from one corner to another through
the center. In unit-vector notation,
what is the body diagonal that extends
from the corner at (a) coordinates (0,
0, 0), (b) coordinates (a, 0, 0), (c) coor-
dinates (0, a, 0), and (d) coordinates (a, a, 0)? (e) Determine the
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••30 Here are two vectors:

What are (a) the magnitude and (b) the angle (relative to ) of ?
What are (c) the magnitude and (d) the angle of ? What are (e)
the magnitude and (f) the angle of (g) the magnitude and
(h) the angle of ; and (i) the magnitude and (j) the angle of

? (k) What is the angle between the directions of 
and ?

••31 In Fig. 3-30, a vector with a magnitude of 17.0 m is
directed at angle 56.0° counterclockwise from the axis.
What are the components (a) ax and (b) ay of the vector? A sec-
ond coordinate system is inclined by angle 18.0° with respect
to the first. What are the components (c) and (d) in this
primed coordinate system?

a�ya�x

�� �

�x� �
a:

a: � b
:

b
:

� a:a: � b
:

b
:

� a:
a: � b

:
;

b
:

a:î

a: � (4.0 m)î � (3.0 m)ĵ and b
:

� (6.0 m)î � (8.0 m)ĵ.

••20 An explorer is caught in a whiteout (in which the
snowfall is so thick that the ground cannot be distinguished from
the sky) while returning to base camp. He was supposed to travel
due north for 5.6 km, but when the snow clears, he discovers that
he actually traveled 7.8 km at 50° north of due east. (a) How far
and (b) in what direction must he now travel to reach base camp?

••21 An ant, crazed by the Sun on a hot Texas afternoon, darts
over an xy plane scratched in the dirt. The x and y components of
four consecutive darts are the following, all in centimeters: (30.0,
40.0), (bx, �70.0), (�20.0, cy), (�80.0, �70.0). The overall displace-
ment of the four darts has the xy components (�140, �20.0). What
are (a) bx and (b) cy? What are the (c) magnitude and (d) angle
(relative to the positive direction of the x axis) of the overall
displacement?

••22 (a) What is the sum of the following four vectors in unit-
vector notation? For that sum, what are (b) the magnitude, (c) the
angle in degrees, and (d) the angle in radians?

••23 If is added to , the result is a vector in the
positive direction of the y axis, with a magnitude equal to that of .
What is the magnitude of ?

••24 Vector , which is directed along an x axis, is to be addedA
:

B
:

C
:

C
:

� 3.0î � 4.0ĵB
:

G
:

: 4.00 m at �1.20 rad    H
:

: 6.00 m at �210�

E
:

: 6.00 m at �0.900 rad    F
:

: 5.00 m at �75.0�
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Figure 3-29 Problem 29.
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Figure 3-31 Problem 32.
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Figure 3-30 Problem 31.

an ant’s displacement from the nest (find it in the figure) if the
ant enters the trail at point A? What are the (c) magnitude and
(d) angle if it enters at point B?

to vector , which has a magnitude of 7.0 m.The sum is a third vec-
tor that is directed along the y axis, with a magnitude that is 3.0
times that of .What is that magnitude of ?

••25 Oasis B is 25 km due east of oasis A. Starting from oasis
A, a camel walks 24 km in a direction 15° south of east and then
walks 8.0 km due north. How far is the camel then from oasis B?

••26 What is the sum of the following four vectors in (a) unit-
vector notation, and as (b) a magnitude and (c) an angle?

••27 If and thend
:

3 � 2î � 4ĵ,d
:

1� d
:

2 � 5d
:

3, d
:

1 � d
:

2 � 3d
:

3,

C
:

� (�4.00 m)î � (�6.00 m)ĵ  D:
:

5.00 m, at �235�

A
:

� (2.00 m)î � (3.00 m)ĵ         B:
:

4.00 m, at �65.0�

A
:

A
:

B
:

what are, in unit-vector notation, (a) and (b) 

••28 Two beetles run across flat sand, starting at the same point.
Beetle 1 runs 0.50 m due east, then 0.80 m at 30° north of due east.
Beetle 2 also makes two runs; the first is 1.6 m at 40° east of due
north. What must be (a) the magnitude and (b) the direction of its
second run if it is to end up at the new location of beetle 1?

••29 Typical backyard ants often create a network of
chemical trails for guidance. Extending outward from the nest, a
trail branches (bifurcates) repeatedly, with 60° between the
branches. If a roaming ant chances upon a trail, it can tell the
way to the nest at any branch point: If it is moving away from
the nest, it has two choices of path requiring a small turn in
its travel direction, either 30° leftward or 30° rightward. If
it is moving toward the nest, it has only one such choice.
Figure 3-29 shows a typical ant trail, with lettered straight sec-
tions of 2.0 cm length and symmetric bifurcation of 60°. Path v is
parallel to the y axis. What are the (a) magnitude and (b) angle
(relative to the positive direction of the superimposed x axis) of

d
:

2?d
:

1



culate the angle between the two vectors given by 
and .

••42 In a meeting of mimes, mime 1 goes through a displacement
and mime 2 goes through a displacement

. What are (a) , (b) ,
(c) , and (d) the com-
ponent of along the direction of

? (Hint: For (d), see Eq. 3-20 and
Fig. 3-18.)

••43 The three vectors in
Fig. 3-33 have magnitudes a 3.00 m,
b 4.00 m, and c 10.0 m and angle

30.0°. What are (a) the x compo-
nent and (b) the y component of ; (c)
the x component and (d) the y com-

a:
� �

��
�

ILWSSM

d
:

2

d
:

1

(d
:

1 � d
:

2) � d
:

2

d
:

1 � d
:

2d
:

1 � d
:

2d
:

2 � (�3.0 m)î � (4.0 m)ĵ
d
:

1 � (4.0 m)î � (5.0 m)ĵ

b
:

� 2.0î � 1.0ĵ � 3.0k̂3.0ĵ � 3.0k̂
a: � 3.0î �

(a) , (b) , (c) , and(a: � b
:

) � b
:

a: � b
:

a: � b
:

is not shown.)

•34 Two vectors are presented as
and . Findb

:
� 2.0î � 4.0ĵa: � 3.0î � 5.0ĵ
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angles that the body diagonals make with the adjacent edges.
(f) Determine the length of the body diagonals in terms of a.

Module 3-3 Multiplying Vectors
•33 For the vectors in Fig. 3-32, with a 4, b 3, and c 5, what
are (a) the magnitude and (b) the direction
of , (c) the magnitude and (d) the di-
rection of , and (e) the magnitude
and (f) the direction of ? (The z axisb

:
� c:

a: � c:
a: � b

:

���

ponent of ; and (e) the x component and (f) the y component of ? If
,what are the values of (g) p and (h) q?

••44 In the product , take q � 2,

.

What then is in unit-vector notation if Bx � By?

Additional Problems

45 Vectors and lie in an xy plane. has magnitude 8.00 and
angle 130°; has components Bx 7.72 and By 9.20. (a)
What is What is in (b) unit-vector notation and
(c) magnitude-angle notation with spherical coordinates (see
Fig. 3-34)? (d) What is the angle between the directions of and

(Hint: Think a bit before you resort to a calculation.)
What is in (e) unit-vector notation and (f) magnitude-
angle notation with spherical coordinates?

A
:

� 3.00k̂
4A

:
� 3B

:
?

A
:

4A
:

� 3B
:

5A
:

� B
:

?
� �� �B

:
A
:

B
:

A
:

B
:

v: � 2.0î � 4.0ĵ � 6.0k̂  and F
:

� 4.0î � 20ĵ � 12k̂

F
:

� qv: � B
:

c: � pa: � qb
:

c:b
:

θ 
a

c

b

x

y

Figure 3-33 Problem 43.

φ 

θ 

y

x

z

Figure 3-34 Problem 45.

46 Vector has a magnitude of 5.0 m and is directed east.a:

(d) the component of along the direc-
tion of . (Hint: For (d), consider Eq. 3-20
and Fig. 3-18.)

•35 Two vectors, and , lie in the xy plane.Their magnitudes are
4.50 and 7.30 units, respectively, and their directions are 320° and
85.0°, respectively, as measured counterclockwise from the positive
x axis.What are the values of (a) and (b) ?

•36 If and , then what is
?

•37 Three vectors are given by 
and . Find (a)

, (b) , and (c) .

••38 For the following three vectors, what is ?

••39 Vector has a magnitude of 6.00 units, vector has a mag-B
:

A
:

B
:

� �3.00î � 4.00ĵ � 2.00k̂  C
:

� 7.00î � 8.00ĵ

A
:

� 2.00î � 3.00ĵ � 4.00k̂

3C
:

� (2A
:

� B
:

)

a: � (b
:

� c:)a: � (b
:

� c:)a: � (b
:

� c:)
c: � 2.0î � 2.0ĵ � 1.0k̂b

:
� �1.0î � 4.0ĵ � 2.0k̂,

a: � 3.0î � 3.0ĵ � 2.0k̂,

(d
:

1 � d
:

2) � (d
:

1 � 4d
:

2)
d
:

2 � �5î � 2ĵ � k̂d
:

1 � 3î � 2ĵ � 4k̂

r: � s:r: � s:

s:r:

b
:

a:

a

c
b

y

x

Figure 3-32
Problems 33 and 54.

nitude of 7.00 units, and has a value of 14.0. What is the angle
between the directions of and ?

••40 Displacement is in the yz plane 63.0° from the positive
direction of the y axis, has a positive z component, and has a mag-
nitude of 4.50 m. Displacement is in the xz plane 30.0° from the
positive direction of the x axis, has a positive z component, and has
magnitude 1.40 m. What are (a) , (b) , and (c) the an-
gle between and ?

••41 Use the definition of scalar product,
, and the fact that to cal-a: � b

:
� axbx � ayby � azbza: � b

:
� ab cos �

WWWILWSSM

d
:

2d
:

1

d
:

1 � d
:

2d
:

1 � d
:

2

d
:

2

d
:

1

B
:

A
:

A
:

� B
:

ax � 3.2, ay 1.6, bx 0.50, by 4.5. (a) Find the angle between
the directions of and .There are two vectors in the xy plane that
are perpendicular to and have a magnitude of 5.0 m. One, vector

, has a positive x component and the other, vector , a negative x
component. What are (b) the x component and (c) the y compo-
nent of vector , and (d) the x component and (e) the y component
of vector ?

49 A sailboat sets out from the U.S. side of Lake Erie for a
point on the Canadian side, 90.0 km due north. The sailor, how-
ever, ends up 50.0 km due east of the starting point. (a) How far
and (b) in what direction must the sailor now sail to reach the orig-
inal destination?

50 Vector is in the negative direction of a y axis, and vector 
is in the positive direction of an x axis. What are the directions of
(a) and (b) What are the magnitudes of products (c)

and (d) What is the direction of the vector result-
ing from (e) and (f) ? What is the magnitude of the
vector product in (g) part (e) and (h) part (f)? What are the (i)
magnitude and (j) direction of ?d

:

1 � (d
:

2/4)

d
:

2 � d
:

1d
:

1 � d
:

2

d
:

1 � (d
:

2 /4)?d
:

1 � d
:

2

d
:

1/(�4)?d
:

2/4

d
:

2d
:

1

SSM

d
:

c:

d
:

c:
a:

b
:

a:
���

Vector has a magnitude of 4.0 m and is directed 35° west of due
north. What are (a) the magnitude and (b) the direction of ?
What are (c) the magnitude and (d) the direction of ? (e)
Draw a vector diagram for each combination.

47 Vectors and lie in an xy plane. has magnitude 8.00
and angle 130°; has components Bx � �7.72 and By � �9.20.
What are the angles between the negative direction of the y axis
and (a) the direction of , (b) the direction of the product

, and (c) the direction of ?

48 Two vectors and have the components, in meters,b
:

a:
A
:

� (B
:

� 3.00k̂)A
:

� B
:

A
:

B
:

A
:

B
:

A
:

b
:

� a:
a: � b

:
b
:
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51 Rock faults are ruptures along which opposite faces of rock
have slid past each other. In Fig. 3-35, points A and B coincided be-
fore the rock in the foreground slid down to the right. The net dis-
placement is along the plane of the fault.The horizontal compo-
nent of is the strike-slip AC. The component of that is
directed down the plane of the fault is the dip-slip AD. (a) What is the
magnitude of the net displacement if the strike-slip is 22.0 m and
the dip-slip is 17.0 m? (b) If the plane of the fault is inclined at angle

52.0° to the horizontal, what is the vertical component of ?AB
9:

� �

AB
9:

AB
9:

AB
9:

AB
9:

58 A vector has a magnitude of 2.5 m and points north. What
are (a) the magnitude and (b) the direction of ? What are (c)
the magnitude and (d) the direction of ?

59 has the magnitude 12.0 m and is angled 60.0° counterclock-
wise from the positive direction of the x axis of an xy coordinate
system. Also, on that same coordinate
system. We now rotate the system counterclockwise about the origin
by 20.0° to form an x�y� system. On this new system, what are (a) 
and (b) ,both in unit-vector notation?

60 If and , then what are
(a) and (b) ?

61 (a) In unit-vector notation, what is if 
5.0 4.0 6.0 , 2.0 2.0 3.0 , and 4.0

3.0 2.0 ? (b) Calculate the angle between and the positive z
axis. (c) What is the component of along the direction of ? (d)
What is the component of perpendicular to the direction of but
in the plane of and ? (Hint: For (c), see Eq. 3-20 and Fig. 3-18;
for (d), see Eq. 3-24.)

62 A golfer takes three putts to get the ball into the hole. The
first putt displaces the ball 3.66 m north, the second 1.83 m south-
east, and the third 0.91 m southwest. What are (a) the magnitude
and (b) the direction of the displacement needed to get the ball
into the hole on the first putt?

63 Here are three vectors in meters:

What results from (a) (b) and
(c) ?

64 A room has dimensions 3.00 m (height)
3.70 m 4.30 m. A fly starting at one corner flies around, ending
up at the diagonally opposite corner. (a) What is the magnitude of
its displacement? (b) Could the length of its path be less than this
magnitude? (c) Greater? (d) Equal? (e) Choose a suitable coordi-
nate system and express the components of the displacement vec-
tor in that system in unit-vector notation. (f) If the fly walks, what
is the length of the shortest path? (Hint: This can be answered
without calculus. The room is like a box. Unfold its walls to flatten
them into a plane.)

65 A protester carries his sign of protest, starting from the ori-
gin of an xyz coordinate system, with the xy plane horizontal. He
moves 40 m in the negative direction of the x axis, then 20 m
along a perpendicular path to his left, and then 25 m up a water
tower. (a) In unit-vector notation, what is the displacement of
the sign from start to end? (b) The sign then falls to the foot of
the tower. What is the magnitude of the displacement of the sign
from start to this new end?

66 Consider in the positive direction of x, in the positive di-
rection of y, and a scalar d. What is the direction of if d is
(a) positive and (b) negative? What is the magnitude of (c) 
and (d) ? What is the direction of the vector resulting from
(e) and (f) ? (g) What is the magnitude of the vector
product in (e)? (h) What is the magnitude of the vector product in
(f)? What are (i) the magnitude and (j) the direction of � if d
is positive?

b
:

/da:

b
:

� a:a: � b
:
a: � b

:
/d

a: � b
:

b
:

/d
b
:

a:

�
�WWWSSM

d
:

1 � (d
:

2 � d
:

3)
d
:

1 � (d
:

2 � d
:

3),d
:

1 � (d
:

2 � d
:

3),

d
:

3 � 2.0î � 3.0ĵ � 1.0k̂.

d
:

2 � �2.0î � 4.0ĵ � 2.0k̂

d
:

1 � �3.0î � 3.0ĵ � 2.0k̂

b
:

a:
b
:

a:
b
:

a:
r:k̂ĵ �

î �c: �k̂ĵ �î �b
:

� �k̂ĵ �î �a: �
c:b

:
�a: �r: �

b
:

a:
c: � 3î � 4ĵa: � b

:
� 2c:, a: � b

:
� 4c:,

B
:

A
:

B
:

� (12.0 m)î � (8.00 m)ĵ

A
:

�3.0d
:

4.0d
:

d
:

A

D

C

Strike-slip

Dip-slip

Fault plane 

B

φ 

Figure 3-35 Problem 51.

52 Here are three displacements, each measured in meters:
and

. (a) What is ? (b) What is the
angle between and the positive z axis? (c) What is the compo-
nent of along the direction of (d) What is the component of

that is perpendicular to the direction of and in the plane of 
and (Hint: For (c), consider  Eq. 3-20 and Fig. 3-18; for (d), con-
sider Eq. 3-24.)

53 A vector of magnitude 10 units and another vector 
of magnitude 6.0 units differ in directions by 60°. Find (a) the
scalar product of the two vectors and (b) the magnitude of the vec-
tor product .

54 For the vectors in Fig. 3-32, with a � 4, b � 3, and c � 5, calcu-
late (a) , (b) , and (c) .

55 A particle undergoes three successive displacements in a
plane, as follows: 4.00 m southwest; then 5.00 m east; and
finally 6.00 m in a direction 60.0° north of east. Choose a coor-
dinate system with the y axis pointing north and the x axis pointing
east.What are (a) the x component and (b) the y component of ?
What are (c) the x component and (d) the y component of  ?
What are (e) the x component and (f) the y component of ?
Next, consider the net displacement of the particle for the three
successive displacements. What are (g) the x component, (h) the y
component, (i) the magnitude, and ( j) the direction of the net dis-
placement? If the particle is to return directly to the starting point,
(k) how far and (l) in what direction should it move?

56 Find the sum of the following four vectors in (a) unit-vector
notation, and as (b) a magnitude and (c) an angle relative to �x.

: 10.0 m, at 25.0° counterclockwise from �x

: 12.0 m, at 10.0° counterclockwise from �y

: 8.00 m, at 20.0° clockwise from �y

: 9.00 m, at 40.0° counterclockwise from �y

57 If is added to , the result is 6.0 � 1.0 . If is subtracted
from , the result is 4.0 7.0 .What is the magnitude of ?A

:
ĵ�î�A

:
B
:

ĵîA
:

B
:

SSM

S
:

R
:
Q
:
P
:

d
:

3

d
:

2

d
:

1

d
:

3,
d
:

2,d
:

1,

b
:

� c:a: � c:a: � b
:

a: � b
:

b
:

a:SSM

d
:

2?
d
:

1d
:

2d
:

1

d
:

2?d
:

1

r:
r: � d

:

1 � d
:

2 � d
:

34.0î � 3.0ĵ � 2.0k̂
d
:

3 �d
:

2 � �1.0î � 2.0ĵ � 3.0k̂,d
:

1 � 4.0î � 5.0ĵ � 6.0k̂,
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67 Let be directed to the east, be directed to the north, and k̂ĵî 72 A fire ant, searching for hot sauce in a picnic area, goes
through three displacements along level ground: l for 0.40 m
southwest (that is, at 45° from directly south and from directly
west), 2 for 0.50 m due east, 3 for 0.60 m at 60° north of east.
Let the positive x direction be east and the positive y direction
be north. What are (a) the x component and (b) the y compo-
nent of l? Next, what are (c) the x component and (d) the y
component of 2? Also, what are (e) the x component and (f)
the y component of 3?

What are (g) the x component, (h) the y component, (i) the
magnitude, and (j) the direction of the ant’s net displacement? If
the ant is to return directly to the starting point, (k) how far and (1)
in what direction should it move?

73 Two vectors are given by � 3.0 � 5.0 and � 2.0 � 4.0 .ĵîb
:

ĵîa:

d
:

d
:

d
:

d
:

d
:

d
:

a

b

f

Figure 3-38 Problem 79.
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Figure 3-36 Problem 68.

be directed upward. What are the values of products (a) � , (b)
(� ) � (� ), and (c) � (� )? What are the directions (such as eastĵĵĵk̂

k̂î

or down) of products (d) � , (e) (� ) � (� ), and (f) (� ) � (� )?

68 A bank in downtown Boston is robbed (see the map in 
Fig. 3-36). To elude police, the robbers escape by helicopter, mak-
ing three successive flights described by the following displace-
ments: 32 km, 45° south of east; 53 km, 26° north of west; 26 km, 18°
east of south. At the end of the third flight they are captured. In
what town are they apprehended?

ĵk̂ĵîĵk̂

69 A wheel with a radius of 45.0 cm
rolls without slipping along a hori-
zontal floor (Fig. 3-37). At time t1,
the dot P painted on the rim of the
wheel is at the point of contact be-
tween the wheel and the floor. At a
later time t2, the wheel has rolled
through one-half of a revolution.
What are (a) the magnitude and (b)
the angle (relative to the floor) of
the displacement of P?

70 A woman walks 250 m in the direction 30° east of north, then
175 m directly east. Find (a) the magnitude and (b) the angle of her
final displacement from the starting point. (c) Find the distance she
walks. (d) Which is greater, that distance or the magnitude of her
displacement?

71 A vector has a magnitude 3.0 m and is directed south. What
are (a) the magnitude and (b) the direction of the vector 5.0 ? What
are (c) the magnitude and (d) the direction of the vector �2.0 ?d

:
d
:

d
:

P

At time t1 At time t2

P

Figure 3-37 Problem 69.

Find (a) � , (b) , (c) , and (d) the component of
along the direction of .

74 Vector lies in the yz plane 63.0� from the positive direction
of the y axis, has a positive z component, and has magnitude 3.20
units. Vector lies in the xz plane 48.0� from the positive direction
of the x axis, has a positive z component, and has magnitude 1.40
units. Find (a) � , (b) � , and (c) the angle between and .

75 Find (a) “north cross west,” (b) “down dot south,” (c) “east
cross up,” (d) “west dot west,” and (e) “south cross south.” Let each
“vector” have unit magnitude.

76 A vector , with a magnitude of 8.0 m, is added to a vector ,
which lies along an x axis. The sum of these two vectors is a third
vector that lies along the y axis and has a magnitude that is twice
the magnitude of .What is the magnitude of ?

77 A man goes for a walk, starting from the origin of an xyz
coordinate system, with the xy plane horizontal and the x axis east-
ward. Carrying a bad penny, he walks 1300 m east, 2200 m north,
and then drops the penny from a cliff 410 m high. (a) In unit-vector
notation, what is the displacement of the penny from start to its
landing point? (b) When the man returns to the origin, what is the
magnitude of his displacement for the return trip?

78 What is the magnitude of � ( � ) if a � 3.90, b � 2.70,
and the angle between the two vectors is 63.0°?

79 In Fig. 3-38, the magnitude of is 4.3, the magnitude of is
5.4, and � � 46°. Find the area of the triangle contained between
the two vectors and the thin diagonal line.
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C H A P T E R  4

Motion in Two and Three Dimensions

4-1 POSITION AND DISPLACEMENT
Learning Objectives
After reading this module, you should be able to . . .

4.01 Draw  two-dimensional and three-dimensional position
vectors for a particle, indicating the components along the
axes of a coordinate system.

4.02 On a coordinate system, determine the direction and

magnitude of a particle’s position vector from its compo-
nents, and vice versa.

4.03 Apply the relationship between a particle’s displace-
ment vector and its initial and final position vectors.

Key Ideas
● The location of a particle relative to the origin of a coordi-
nate system is given by a position vector , which in unit-
vector notation is

Here x , y , and z are the vector components of position 
vector , and and z are its scalar components (as well
as the coordinates of the particle).

● A position vector is described either by a magnitude and

x, y,r:
k̂ĵî

r: � x î � y ĵ � zk̂.

r:
one or two angles for orientation, or by its vector or scalar
components.

● If a particle moves so that its position vector changes from
to , the particle’s displacement is

The displacement can also be written as

� �x î � �y ĵ � �zk̂.

� r: � (x2 � x1)î � (y2 � y1)ĵ � (z2 � z1)k̂

� r: � r:2 � r:1.
� r:r:2r:1

What Is Physics?
In this chapter we continue looking at the aspect of physics that analyzes
motion, but now the motion can be in two or three dimensions. For example,
medical researchers and aeronautical engineers might concentrate on the
physics of the two- and three-dimensional turns taken by fighter pilots in dog-
fights because a modern high-performance jet can take a tight turn so quickly
that the pilot immediately loses consciousness. A sports engineer might focus
on the physics of basketball. For example, in a free throw (where a player gets
an uncontested shot at the basket from about 4.3 m), a player might employ the
overhand push shot, in which the ball is pushed away from about shoulder
height and then released. Or the player might use an underhand loop shot, in
which the ball is brought upward from about the belt-line level and released.
The first technique is the overwhelming choice among professional players, but
the legendary Rick Barry set the record for free-throw shooting with the under-
hand technique.

Motion in three dimensions is not easy to understand. For example, you are
probably good at driving a car along a freeway (one-dimensional motion) but
would probably have a difficult time in landing an airplane on a runway (three-
dimensional motion) without a lot of training.

In our study of two- and three-dimensional motion, we start with position
and displacement.



Position and Displacement
One general way of locating a particle (or particle-like object) is with a position
vector , which is a vector that extends from a reference point (usually the 
origin) to the particle. In the unit-vector notation of Module 3-2, can be written

(4-1)

where x , y , and z are the vector components of and the coefficients x, y, and z
are its scalar components.

The coefficients x, y, and z give the particle’s location along the coordinate
axes and relative to the origin; that is, the particle has the rectangular coordinates
(x, y, z). For instance, Fig. 4-1 shows a particle with position vector

and rectangular coordinates (�3 m, 2 m, 5 m). Along the x axis the particle is
3 m from the origin, in the direction. Along the y axis it is 2 m from the
origin, in the direction. Along the z axis it is 5 m from the origin, in the 
direction.

As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from to during a certain time interval—then the
particle’s displacement during that time interval is

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as

or as (4-3)

where coordinates (x1, y1, z1) correspond to position vector and coordinates
(x2, y2, z2) correspond to position vector . We can also rewrite the displacement
by substituting x for (x2 x1), y for (y2 y1), and z for (z2 z1):

(4-4)� r: � �x î � �y ĵ � �zk̂.

������
r:2

r:1

� r: � (x2 � x1)î � (y2 � y1)ĵ � (z2 � z1)k̂,

� r: � (x2î � y2 ĵ � z2k̂) � (x1î � y1 ĵ � z1k̂)

� r: � r:2 � r:1.

� r:
r:2r:1

�k̂�ĵ
�î

r: � (�3 m)î � (2 m)ĵ � (5 m)k̂

r:k̂ĵî

r: � x î � y ĵ � zk̂,

r:
r:

Figure 4-1 The position vector for a parti-
cle is the vector sum of its vector compo-
nents.

r:

y

x

z

(–3 m)i
(2 m)j(5 m)k

O

ˆ
ˆ

ˆ

r

To locate the 
particle, this
is how far
parallel to z.

This is how far
parallel to y.

This is how far
parallel to x.

position vector . Let’s evaluate those coordinates at the
given time, and then we can use Eq. 3-6 to evaluate the mag-
nitude and orientation of the position vector.

r:

Sample Problem 4.01 Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time t (seconds) are given by

x � �0.31t2 � 7.2t � 28 (4-5)

and y � 0.22t2 � 9.1t � 30. (4-6)

(a) At t � 15 s, what is the rabbit’s position vector in unit-
vector notation and in magnitude-angle notation?

KEY IDEA

The x and y coordinates of the rabbit’s position, as given by
Eqs. 4-5 and 4-6, are the scalar components of the rabbit’s

r:

Calculations: We can write

(4-7)

(We write rather than because the components are
functions of t, and thus is also.)

At t � 15 s, the scalar components are

x � (�0.31)(15)2 � (7.2)(15) � 28 � 66 m

and y � (0.22)(15)2 � (9.1)(15) � 30 � �57 m,

so (Answer)r: � (66 m)î � (57 m)ĵ,

r:
r:r:(t)

r:(t) � x(t)î � y(t)ĵ.

634-1 POSITION AND DISPLACEMENT
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t = 0 s

This is the path with
various times indicated.

x (m)
0

20

40

–20

–40

–60

y (m)

20 40 60 80

(a)

–41°

r

This is the y component.

To locate the 
rabbit, this is the 
x component.

Figure 4-2 (a) A rabbit’s position vector
at time t � 15 s. The scalar compo-

nents of are shown along the axes.
(b) The rabbit’s path and its position at
six values of t.

r:
r:

Additional examples, video, and practice available at WileyPLUS

Check: Although u � 139° has the same tangent as �41°,
the components of position vector indicate that the de-
sired angle is  139° � 180° � �41°.

(b) Graph the rabbit’s path for t � 0 to t � 25 s.

Graphing: We have located the rabbit at one instant, but to
see its path we need a graph. So we repeat part (a) for sev-
eral values of t and then plot the results. Figure 4-2b shows
the plots for six values of t and the path connecting them.

r:
which is drawn in Fig. 4-2a. To get the magnitude and angle
of , notice that the components form the legs of a right tri-
angle and r is the hypotenuse. So, we use Eq. 3-6:

(Answer)

and . (Answer)� � tan�1 y
x

� tan�1 � �57 m
66 m �� �41�

� 87 m,

r � 2x2 � y2 � 2(66 m)2 � (�57 m)2

r:

4.06 In magnitude-angle and unit-vector notations, relate a parti-
cle’s initial and final position vectors, the time interval between
those positions, and the particle’s average velocity vector.

4.07 Given a particle’s position vector as a function of time,
determine its (instantaneous) velocity vector.

Learning Objectives
After reading this module, you should be able to . . . 

4.04 Identify that velocity is a vector quantity and thus has
both magnitude and direction and also has components.

4.05 Draw two-dimensional and three-dimensional velocity
vectors for a particle, indicating the components along the
axes of the coordinate system.

which can be rewritten in unit-vector notation as

where and 

● The instantaneous velocity of a particle is always directed
along the tangent to the particle’s path at the particle’s 
position.

v:

vz � dz/dt.vx � dx/dt, vy � dy/dt,

v: � vx î � vy ĵ � vzk̂,

Key Ideas
● If a particle undergoes a displacement in time interval t,
its average velocity for that time interval is

● As t is shrunk to 0, reaches a limit called either the 
velocity or the instantaneous velocity :

v: �
d r:

dt
,

v:
v:avg�

v:avg �
� r:

�t
.

v:avg

�� r:
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Average Velocity and Instantaneous Velocity
If a particle moves from one point to another, we might need to know how fast it
moves. Just as in Chapter 2, we can define two quantities that deal with “how
fast”: average velocity and instantaneous velocity. However, here we must con-
sider these quantities as vectors and use vector notation.

If a particle moves through a displacement in a time interval t, then its
average velocity is

or (4-8)

This tells us that the direction of (the vector on the left side of Eq. 4-8) must
be the same as that of the displacement (the vector on the right side). Using
Eq. 4-4, we can write Eq. 4-8 in vector components as

(4-9)

For example, if a particle moves through displacement in
2.0 s, then its average velocity during that move is

That is, the average velocity (a vector quantity) has a component of 6.0 m/s along
the x axis and a component of 1.5 m/s along the z axis.

When we speak of the velocity of a particle, we usually mean the particle’s 
instantaneous velocity at some instant. This is the value that approaches
in the limit as we shrink the time interval t to 0 about that instant. Using the lan-
guage of calculus, we may write as the derivative

(4-10)

Figure 4-3 shows the path of a particle that is restricted to the xy plane. As
the particle travels to the right along the curve, its position vector sweeps to the
right. During time interval t, the position vector changes from to and the
particle’s displacement is .

To find the instantaneous velocity of the particle at, say, instant t1 (when the
particle is at position 1), we shrink interval t to 0 about t1. Three things happen
as we do so. (1) Position vector in Fig. 4-3 moves toward so that shrinks� r:r:1r:2

�

� r:
r:2r:1�

v: �
d r:

dt
.

v:
�

v:avgv:v:

v:avg �
� r:

�t
�

(12 m)î � (3.0 m)k̂
2.0 s

� (6.0 m/s)î � (1.5 m/s)k̂.

(12 m)î � (3.0 m)k̂

v:avg �
�xî � �yĵ � �zk̂

�t
�

�x
�t

 î �
�y
�t

 ĵ �
�z
�t

 k̂.

� r:
v:avg

v:avg �
� r:

�t
.

average velocity �
displacement
time interval

,

v:avg

�� r:

Figure 4-3 The displacement of a particle
during a time interval , from position 1 with
position vector at time t1 to position 2 
with position vector at time t2. The tangent
to the particle’s path at position 1 is shown.

r:2

r:1

�t
� r:

r1
r2

Path

Tangent

O

y

x

1
2

rΔ

As the particle moves,
the position vector
must change.

This is the 
displacement.



toward zero. (2) The direction of (and thus of ) approaches the
direction of the line tangent to the particle’s path at position 1. (3) The average
velocity approaches the instantaneous velocity at t1.v:v:avg

v:avg� r:/�t

Figure 4-4 The velocity of a
particle, along with the scalar
components of .v:

v:

Path

O

y

x

Tangent

vy

vx

v

The velocity vector is always
tangent to the path.

These are the x and y
components of the vector
at this instant.

Checkpoint 1
The figure shows a circular path taken by a particle.
If the instantaneous velocity of the particle is 

, through which quadrant is the par-
ticle moving at that instant if it is traveling (a) clockwise
and (b) counterclockwise around the circle? For both
cases, draw on the figure.v:

(2 m/s)î � (2 m/s)ĵ
v: �

y

x

66 CHAPTER 4 MOTION IN TWO AND THREE DIMENSIONS

The direction of the instantaneous velocity of a particle is always tangent to the
particle’s path at the particle’s position.

v:

The result is the same in three dimensions: is always tangent to the particle’s path.
To write Eq. 4-10 in unit-vector form, we substitute for from Eq. 4-1:

This equation can be simplified somewhat by writing it as

(4-11)

where the scalar components of are

(4-12)

For example, dx/dt is the scalar component of along the x axis.Thus, we can find
the scalar components of by differentiating the scalar components of .

Figure 4-4 shows a velocity vector and its scalar x and y components. Note
that is tangent to the particle’s path at the particle’s position. Caution: When a
position vector is drawn, as in Figs. 4-1 through 4-3, it is an arrow that extends
from one point (a “here”) to another point (a “there”). However, when a velocity
vector is drawn, as in Fig. 4-4, it does not extend from one point to another.
Rather, it shows the instantaneous direction of travel of a particle at the tail, and
its length (representing the velocity magnitude) can be drawn to any scale.

v:
v:

r:v:
v:

vx �
dx
dt

, vy �
dy
dt

, and vz �
dz
dt

.

v:

v: � vx î � vy ĵ � vzk̂,

v: �
d
dt

 (x î � y ĵ � zk̂) �
dx
dt

 î �
dy
dt

 ĵ �
dz
dt

 k̂.

r:
v:

In the limit as , we have and, most important here, takes
on the direction of the tangent line.Thus, has that direction as well:v:

v:avgv:avg : v:�t : 0
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(Answer)

and

(Answer)

Check: Is the angle �130° or �130° � 180° � 50°?

� tan�1 1.19 � �130�.

� � tan�1
vy

vx
� tan�1 � �2.5 m/s

�2.1 m/s �
� 3.3 m/s

v � 2vx
2 � vy

2 � 2(�2.1 m/s)2 � (�2.5 m/s)2For the rabbit in the preceding sample problem, find the 
velocity at time t � 15 s.

KEY IDEA

We can find by taking derivatives of the components of
the rabbit’s position vector.

Calculations: Applying the vx part of Eq. 4-12 to Eq. 4-5,
we find the x component of to be

(4-13)

At t � 15 s, this gives vx � �2.1 m/s. Similarly, applying the
vy part of Eq. 4-12 to Eq. 4-6, we find

(4-14)

At t � 15 s, this gives vy � �2.5 m/s. Equation 4-11 then yields

(Answer)

which is shown in Fig. 4-5, tangent to the rabbit’s path and in
the direction the rabbit is running at t � 15 s.

To get the magnitude and angle of , either we use a
vector-capable calculator or we follow Eq. 3-6 to write

v:

v: � (�2.1 m/s)î � (�2.5 m/s)ĵ ,

� 0.44t � 9.1.

vy �
dy
dt

�
d
dt

 (0.22t2 � 9.1t � 30)

� �0.62t � 7.2.

vx �
dx
dt

�
d
dt

 (�0.31t2 � 7.2t � 28)

v:

v:

v:

Sample Problem 4.02 Two-dimensional velocity, rabbit run

Additional examples, video, and practice available at WileyPLUS

Figure 4-5 The rabbit’s velocity at t � 15 s.v:
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v
These are the x and y
components of the vector
at this instant.
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the average acceleration vector in magnitude-angle and
unit-vector notations.

4.11 Given a particle’s velocity vector as a function of time,
determine its (instantaneous) acceleration vector.

4.12 For each dimension of motion, apply the constant-
acceleration equations (Chapter 2) to relate acceleration,
velocity, position, and time.

Learning Objectives
After reading this module, you should be able to . . . 

4.08 Identify that acceleration is a vector quantity and thus has
both magnitude and direction and also has components.

4.09 Draw two-dimensional and three-dimensional accelera-
tion vectors for a particle, indicating the components.

4.10 Given the initial and final velocity vectors of a particle
and the time interval between those velocities, determine

either the acceleration or the instantaneous acceleration :

● In unit-vector notation,

where and az � dvz/dt.ax � dvx/dt, ay � dvy/dt,

a: � ax î � ay ĵ � azk̂,

a: �
dv:

dt
.

a:
Key Ideas
● If a particle’s velocity changes from to in time interval

t, its average acceleration during t is

● As t is shrunk to 0, reaches a limiting value called a:avg�

a:avg �
v:2 � v:1

�t
�

�v:

�t
.

��
v:2v:1
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Average Acceleration and Instantaneous Acceleration
When a particle’s velocity changes from to in a time interval t, its average
acceleration during t is

or (4-15)

If we shrink �t to zero about some instant, then in the limit approaches the
instantaneous acceleration (or acceleration) at that instant; that is,

(4-16)

If the velocity changes in either magnitude or direction (or both), the particle
must have an acceleration.

We can write Eq. 4-16 in unit-vector form by substituting Eq. 4-11 for to obtain

We can rewrite this as

(4-17)

where the scalar components of are

(4-18)

To find the scalar components of , we differentiate the scalar components of .
Figure 4-6 shows an acceleration vector and its scalar components for a

particle moving in two dimensions. Caution: When an acceleration vector is
drawn, as in Fig. 4-6, it does not extend from one position to another. Rather, it
shows the direction of acceleration for a particle located at its tail, and its length
(representing the acceleration magnitude) can be drawn to any scale.

a:
v:a:

ax �
dvx

dt
, ay �

dvy

dt
, and az �

dvz

dt
.

a:

a: � ax î � ay ĵ � azk̂,

�
dvx

dt
 î �

dvy

dt
 ĵ �

dvz

dt
 k̂.

a: �
d
dt

 (vx î � vy ĵ � vzk̂)

v:

a: �
dv:

dt
.

a:
a:avg

a:avg �
v:2 � v:1

�t
�

�v:

�t
.

average
acceleration �

change in velocity
time interval

,

�a:avg

�v:2v:1

O

y

x

ay

ax

Path

a

These are the x and y
components of the vector
at this instant.

Figure 4-6 The acceleration of a particle and the
scalar components of .a:

a:
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Sample Problem 4.03 Two-dimensional acceleration, rabbit run

Additional examples, video, and practice available at WileyPLUS

For the rabbit in the preceding two sample problems, find
the acceleration at time t � 15 s.

KEY IDEA

We can find by taking derivatives of the rabbit’s velocity
components.

Calculations: Applying the ax part of Eq. 4-18 to Eq. 4-13,
we find the x component of to be

Similarly, applying the ay part of Eq. 4-18 to Eq. 4-14 yields
the y component as

We see that the acceleration does not vary with time (it is a
constant) because the time variable t does not appear in the
expression for either acceleration component. Equation 4-17
then yields

(Answer)

which is superimposed on the rabbit’s path in Fig. 4-7.
To get the magnitude and angle of , either we use a

vector-capable calculator or we follow Eq. 3-6. For the mag-
nitude we have

(Answer)

For the angle we have

However, this angle, which is the one displayed on a calcula-
tor, indicates that is directed to the right and downward in
Fig. 4-7. Yet, we know from the components that must be
directed to the left and upward. To find the other angle that

a:
a:

� � tan�1
ay

ax
� tan�1 � 0.44 m/s2

�0.62 m/s2 �� �35�.

� 0.76 m/s2.

a � 2ax
2 � ay

2 � 2(�0.62 m/s2)2 � (0.44 m/s2)2

a:

a: � (�0.62 m/s2)î � (0.44 m/s2)ĵ ,

ay �
dvy

dt
�

d

dt
 (0.44t � 9.1) � 0.44 m/s2.

ax �
dvx

dt
�

d
dt

 (�0.62t � 7.2) � �0.62 m/s2.

a:

a:

a:
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145°a

These are the x and y
components of the vector
at this instant.

Figure 4-7 The acceleration of the rabbit at t � 15 s. The rabbit
happens to have this same acceleration at all points on its path.

a:

has the same tangent as �35° but is not displayed on a cal-
culator, we add 180°:

�35° � 180° � 145°. (Answer)

This is consistent with the components of because it gives 
a vector that is to the left and upward. Note that has the
same magnitude and direction throughout the rabbit’s run
because the acceleration is constant. That means that
we could draw the very same vector at any other point
along the rabbit’s path (just shift the vector to put its tail at
some other point on the path without changing the length
or orientation).

This has been the second sample problem in which we
needed to take the derivative of a vector that is written in
unit-vector notation. One common error is to neglect the unit
vectors themselves, with a result of only a set of numbers and
symbols. Keep in mind that a derivative of a vector is always
another vector.

a:
a:

Checkpoint 2
Here are four descriptions of the position (in meters) of a puck as it moves in an xy plane:

(1) x � �3t 2 � 4t � 2 and y � 6t 2 � 4t (3)

(2) x � �3t 3 � 4t and y � �5t 2 � 6 (4)

Are the x and y acceleration components constant? Is  acceleration constant?a:
r: � (4t3 � 2t)î � 3ĵ

r: � 2t2 î � (4t � 3)ĵ
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Projectile Motion
We next consider a special case of two-dimensional motion: A particle moves in a
vertical plane with some initial velocity but its acceleration is always the free-
fall acceleration , which is downward. Such a particle is called a projectile (mean-
ing that it is projected or launched), and its motion is called projectile motion. A
projectile might be a tennis ball (Fig. 4-8) or baseball in flight, but it is not a duck
in flight. Many sports involve the study of the projectile motion of a ball. For ex-
ample, the racquetball player who discovered the Z-shot in the 1970s easily won
his games because of the ball’s perplexing flight to the rear of the court.

Our goal here is to analyze projectile motion using the tools for two-
dimensional motion described in Module 4-1 through 4-3 and making the
assumption that air has no effect on the projectile. Figure 4-9, which we shall ana-
lyze soon, shows the path followed by a projectile when the air has no effect. The
projectile is launched with an initial velocity that can be written as

(4-19)

The components v0x and v0y can then be found if we know the angle u0 between
and the positive x direction:

v0x � v0 cos u0 and v0y � v0 sin u0. (4-20)

During its two-dimensional motion, the projectile’s position vector and velocity
vector change continuously, but its acceleration vector is constant and always
directed vertically downward.The projectile has no horizontal acceleration.

Projectile motion, like that in Figs. 4-8 and 4-9, looks complicated, but we
have the following simplifying feature (known from experiment):

a:v:
r:

v:0

v:0 � v0x î � v0y ĵ.

v:0

g:
v:0

Figure 4-8 A stroboscopic photograph of
a yellow tennis ball bouncing off a hard
surface. Between impacts, the ball has 
projectile motion.

Richard Megna/Fundamental Photographs

● In projectile motion, a particle is launched into the air with a
speed v0 and at an angle u0 (as measured from a horizontal x
axis). During flight, its horizontal acceleration is zero and its
vertical acceleration is �g (downward on a vertical y axis).

● The equations of motion for the particle (while in flight) can
be written as

v2
y � (v0 sin �0)2 � 2g(y � y0).

vy � v0 sin �0 � gt,
y � y0 � (v0 sin �0)t � 1

2gt2,

x � x0 � (v0 cos �0)t,

● The trajectory (path) of a particle in projectile motion is par-
abolic and is given by

if x0 and y0 are zero. 

● The particle’s horizontal range R, which is the horizontal
distance from the launch point to the point at which the parti-
cle returns to the launch height, is

R �
v0

2

g
sin 2�0.

y � (tan �0)x �
gx2

2(v0 cos �0)2 ,

4-4 PROJECTILE MOTION

4.14 Given the launch velocity in either magnitude-angle or
unit-vector notation, calculate the particle’s position, dis-
placement, and velocity at a given instant during the flight.

4.15 Given data for an instant during the flight, calculate the
launch velocity.

Learning Objectives
After reading this module, you should be able to . . .

4.13 On a sketch of the path taken in projectile motion, 
explain the magnitudes and directions of the velocity 
and acceleration components during the flight.

Key Ideas

In projectile motion, the horizontal motion and the vertical motion are indepen-
dent of each other; that is, neither motion affects the other.
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Figure 4-9 The projectile motion of an object launched into the air at the origin of a coordinate system and with launch
velocity at angle u0. The motion is a combination of vertical motion (constant acceleration) and horizontal motion 
(constant velocity), as shown by the velocity components.

v:0
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Checkpoint 3
At a certain instant, a fly ball has velocity (the x axis is horizontal, the
y axis is upward, and is in meters per second). Has the ball passed its highest point?v:

v: � 25î � 4.9ĵ

Figure 4-11 The projectile ball always 
hits the falling can. Each falls a distance h
from where it would be were there no
free-fall acceleration.

M

Can
h

Zer
o-g

path

G

The ball and the can fall
the same distance h.

Figure 4-10 One ball is released from rest at
the same instant that another ball is shot
horizontally to the right. Their vertical
motions are identical.

Richard Megna/Fundamental Photographs

The Horizontal Motion
Now we are ready to analyze projectile motion, horizontally and vertically.
We start with the horizontal motion. Because there is no acceleration in the hori-
zontal direction, the horizontal component vx of the projectile’s velocity remains
unchanged from its initial value v0x throughout the motion, as demonstrated in
Fig. 4-12. At any time t, the projectile’s horizontal displacement x � x0 from an
initial position x0 is given by Eq. 2-15 with a � 0, which we write as

x � x0 � v0xt.

Because v0x � v0 cos u0, this becomes

x � x0 � (v0 cos u0)t. (4-21)

The Vertical Motion
The vertical motion is the motion we discussed in Module 2-5 for a particle in
free fall. Most important is that the acceleration is constant. Thus, the equations
of Table 2-1 apply, provided we substitute �g for a and switch to y notation.Then,
for example, Eq. 2-15 becomes

(4-22)

where the initial vertical velocity component v0y is replaced with the equivalent 
v0 sin u0. Similarly, Eqs. 2-11 and 2-16 become

vy � v0 sin u0 � gt (4-23)

and (4-24)vy
2 � (v0 sin �0)2 � 2g(y � y0).

� (v0 sin �0)t � 1
2gt 2,

y � y0 � v0yt � 1
2gt 2

This feature allows us to break up a problem involving two-dimensional motion
into two separate and easier one-dimensional problems, one for the horizontal
motion (with zero acceleration) and one for the vertical motion (with constant
downward acceleration). Here are two experiments that show that the horizontal
motion and the vertical motion are independent.

Two Golf Balls
Figure 4-10 is a stroboscopic photograph of two golf balls, one simply released and
the other shot horizontally by a spring.The golf balls have the same vertical motion,
both falling through the same vertical distance in the same interval of time. The fact
that one ball is moving horizontally while it is falling has no effect on its vertical mo-
tion; that is, the horizontal and vertical motions are independent of each other.

A Great Student Rouser
In Fig. 4-11, a blowgun G using a ball as a projectile is aimed directly at a can sus-
pended from a magnet M. Just as the ball leaves the blowgun, the can is released. If g
(the magnitude of the free-fall acceleration) were zero, the ball would follow the
straight-line path shown in Fig. 4-11 and the can would float in place after the
magnet released it. The ball would certainly hit the can. However, g is not zero,
but the ball still hits the can! As Fig. 4-11 shows, during the time of flight of the
ball, both ball and can fall the same distance h from their zero-g locations. The
harder the demonstrator blows, the greater is the ball’s initial speed, the shorter
the flight time, and the smaller the value of h.
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As is illustrated in Fig. 4-9 and Eq. 4-23, the vertical velocity component be-
haves just as for a ball thrown vertically upward. It is directed upward initially,
and its magnitude steadily decreases to zero, which marks the maximum height of
the path. The vertical velocity component then reverses direction, and its magni-
tude becomes larger with time.

The Equation of the Path
We can find the equation of the projectile’s path (its trajectory) by eliminating
time t between Eqs. 4-21 and 4-22. Solving Eq. 4-21 for t and substituting into
Eq. 4-22, we obtain, after a little rearrangement,

(trajectory). (4-25)

This is the equation of the path shown in Fig. 4-9. In deriving it, for simplicity we
let x0 � 0 and y0 � 0 in Eqs. 4-21 and 4-22, respectively. Because g, u0, and v0 are
constants, Eq. 4-25 is of the form y � ax � bx2, in which a and b are constants.
This is the equation of a parabola, so the path is parabolic.

The Horizontal Range
The horizontal range R of the projectile is the horizontal distance the projectile
has traveled when it returns to its initial height (the height at which it is
launched). To find range R, let us put x � x0 � R in Eq. 4-21 and y � y0 � 0 in 
Eq. 4-22, obtaining

R � (v0 cos u0)t

and

Eliminating t between these two equations yields

Using the identity sin 2u0 � 2 sin u0 cos u0 (see Appendix E), we obtain

(4-26)

This equation does not give the horizontal distance traveled by a projectile when
the final height is not the launch height. Note that R in Eq. 4-26 has its maximum
value when sin 2u0 � 1, which corresponds to 2u0 � 90° or u0 � 45°.

R �
v0

2

g
 sin 2�0.

R �
2v0

2

g
 sin �0 cos �0.

0 � (v0 sin �0)t � 1
2gt 2.

y � (tan �0)x �
gx2

2(v0 cos �0)2

Figure 4-12 The vertical component of this
skateboarder’s velocity is changing but not
the horizontal component, which matches
the skateboard’s velocity. As a result, the
skateboard stays underneath him, allowing
him to land on it.

Jamie Budge

The horizontal range R is maximum for a launch angle of 45°.

However, when the launch and landing heights differ, as in many sports, a launch
angle of 45° does not yield the maximum horizontal distance.

The Effects of the Air
We have assumed that the air through which the projectile moves has no effect
on its motion. However, in many situations, the disagreement between our calcu-
lations and the actual motion of the projectile can be large because the air resists
(opposes) the motion. Figure 4-13, for example, shows two paths for a fly ball that
leaves the bat at an angle of 60° with the horizontal and an initial speed of 
44.7 m/s. Path I (the baseball player’s fly ball) is a calculated path that
approximates normal conditions of play, in air. Path II (the physics professor’s fly
ball) is the path the ball would follow in a vacuum.

Figure 4-13 (I) The path of a fly ball calcu-
lated by taking air resistance into account.
(II) The path the ball would follow in a
vacuum, calculated by the methods of this
chapter. See Table 4-1 for corresponding
data. (Based on “The Trajectory of a Fly
Ball,” by Peter J. Brancazio, The Physics
Teacher, January 1985.)

x

y

60°

v0

I

II

Air reduces 
height ... ... and range.

Table 4-1 Two Fly Ballsa

Path I Path II 
(Air) (Vacuum)

Range 98.5 m 177 m
Maximum

height 53.0 m 76.8 m
Time 

of flight 6.6 s 7.9 s

aSee Fig. 4-13.The launch angle is 60° and the
launch speed is 44.7 m/s.
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Additional examples, video, and practice available at WileyPLUS

Sample Problem 4.04 Projectile dropped from airplane

Then Eq. 4-27 gives us

(Answer)

(b) As the capsule reaches the water, what is its velocity ?

KEY IDEAS

(1) The horizontal and vertical components of the capsule’s
velocity are independent. (2) Component vx does not change
from its initial value v0x � v0 cos u0 because there is no hori-
zontal acceleration. (3) Component vy changes from its initial
value v0y � v0 sinu0 because there is a vertical acceleration.

Calculations: When the capsule reaches the water,

vx � v0 cos u0 � (55.0 m/s)(cos 0°) � 55.0 m/s.

Using Eq. 4-23 and the capsule’s time of fall t � 10.1 s, we
also find that when the capsule reaches the water,

vy � v0 sin u0 � gt

� (55.0 m/s)(sin 0°) � (9.8 m/s2)(10.1 s)

� �99.0 m/s.
Thus, at the water

(Answer)

From Eq. 3-6, the magnitude and the angle of are

v � 113 m/s and u � �60.9°. (Answer)

v:

v: � (55.0 m/s)î � (99.0 m/s)ĵ.

v:

� � tan�1 555.5 m
500 m

� 48.0�.

In Fig. 4-14, a rescue plane flies at 198 km/h (� 55.0 m/s) and
constant height h � 500 m toward a point directly over a
victim, where a rescue capsule is to land.

(a) What should be the angle f of the pilot’s line of sight to
the victim when the capsule release is made?

KEY IDEAS

Once released, the capsule is a projectile, so its horizontal
and vertical motions can be considered separately (we need
not consider the actual curved path of the capsule).

Calculations: In Fig. 4-14, we see that f is given by

(4-27)

where x is the horizontal coordinate of the victim (and of
the capsule when it hits the water) and h � 500 m. We
should be able to find x with Eq. 4-21:

x � x0 � (v0 cos u0)t. (4-28)

Here we know that x0 � 0 because the origin is placed at
the point of release. Because the capsule is released and
not shot from the plane, its initial velocity is equal to
the plane’s velocity. Thus, we know also that the initial ve-
locity has magnitude v0 � 55.0 m/s and angle u0 � 0°
(measured relative to the positive direction of the x axis).
However, we do not know the time t the capsule takes to
move from the plane to the victim.

To find t, we next consider the vertical motion and
specifically Eq. 4-22:

(4-29)

Here the vertical displacement y � y0 of the capsule is 
�500 m (the negative value indicates that the capsule
moves downward). So,

(4-30)

Solving for t, we find t � 10.1 s. Using that value in Eq. 4-28
yields

x � 0 � (55.0 m/s)(cos 0°)(10.1 s), (4-31)

or x � 555.5 m.

�500 m � (55.0 m/s)(sin 0�)t � 1
2 (9.8 m/s2)t2.

y � y0 � (v0 sin �0)t � 1
2gt2.

v:0

� � tan�1 x
h

,

y

θ

φ
O

v0

Trajectory
Line of sight

h

x

v

Figure 4-14 A plane drops a rescue capsule while moving at
constant velocity in level flight. While falling, the capsule 
remains under the plane.

Checkpoint 4
A fly ball is hit to the outfield. During its flight (ignore the effects of the air), what
happens to its (a) horizontal and (b) vertical components of velocity? What are the (c)
horizontal and (d) vertical components of its acceleration during ascent, during de-
scent, and at the topmost point of its flight?
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Sample Problem 4.05 Launched into the air from a water slide

One of the most dramatic videos on the web (but entirely
fictitious) supposedly shows a man sliding along a long wa-
ter slide and then being launched into the air to land in a
water pool. Let’s attach some reasonable numbers to such
a flight to calculate the velocity with which the man would
have hit the water. Figure 4-15a indicates the launch and
landing sites and includes a superimposed coordinate sys-
tem with its origin conveniently located at the launch site.
From the video we take the horizontal flight distance as
D � 20.0 m, the flight time as t � 2.50 s, and the launch an-
gle as 0 � 40.0°. Find the magnitude of the velocity at
launch and at landing.

KEY IDEAS

(1) For projectile motion, we can apply the equations for con-
stant acceleration along the horizontal and vertical axes sepa-
rately. (2) Throughout the flight, the vertical acceleration is 
ay � �g � �9.8 m/s and the horizontal acceleration is .

Calculations: In most projectile problems, the initial chal-
lenge is to figure out where to start. There is nothing wrong
with trying out various equations, to see if we can somehow
get to the velocities. But here is a clue. Because we are going
to apply the constant-acceleration equations separately to
the x and y motions, we should find the horizontal and verti-
cal components of the velocities at launch and at landing.
For each site, we can then combine the velocity components
to get the velocity.

Because we know the horizontal displacement D �
20.0 m, let’s start with the horizontal motion. Since ,ax � 0

ax � 0

�

we know that the horizontal velocity component is con-
stant during the flight and thus is always equal to the hori-
zontal component v0x at launch. We can relate that compo-
nent, the displacement and the flight time t � 2.50 s
with Eq. 2-15:

(4-32)

Substituting this becomes Eq. 4-21. With 
we then write

That is a component of the launch velocity, but we need
the magnitude of the full vector, as shown in Fig. 4-15b,
where the components form the legs of a right triangle and
the full vector forms the hypotenuse. We can then apply a
trig definition to find the magnitude of the full velocity at
launch:

and so

(Answer)

Now let’s go after the magnitude v of the landing veloc-
ity. We already know the horizontal component, which does
not change from its initial value of 8.00 m/s.To find the verti-
cal component vy and because we know the elapsed time t �
2.50 s and the vertical acceleration let’s
rewrite Eq. 2-11 as

and then (from Fig. 4-15b) as

(4-33)

Substituting ay � �g, this becomes Eq. 4-23.We can then write

Now that we know both components of the landing velocity,
we use Eq. 3-6 to find the velocity magnitude:

(Answer)� 19.49 m/s2 � 19.5 m/s.

� 2(8.00 m/s)2 � (�17.78 m/s)2

v � 2vx
2 � vy

2

� �17.78 m/s.

vy � (10.44 m/s) sin (40.0�) � (9.8 m/s2)(2.50 s)

vy � v0 sin �0 � ayt.

vy � v0y � ayt

ay � �9.8 m/s2,

� 10.44 m/s �  10.4 m/s.

v0 �
v0x

cos u0
�

8.00 m/s
cos 40�

cos�0 �
v0x

v0
,

v0x � 8.00 m/s.

20 m � v0x(2.50 s) � 1
2 (0)(2.50 s)2

x � x0 � D,ax � 0,

x � x0 � v0xt � 1
2axt2.

x � x0,

vx

D

θ0

v0

y

x
Launch

Water
pool

(a)

θ0

v0
v0y

v0x

θ0

v
vy

v0x

(b) (c)

Landing
velocity

Launch
velocity

Figure 4-15 (a) Launch from a water slide, to land in a water pool.
The velocity at (b) launch and (c) landing.

Additional examples, video, and practice available at WileyPLUS
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Uniform Circular Motion
A particle is in uniform circular motion if it travels around a circle or a circular
arc at constant (uniform) speed. Although the speed does not vary, the particle is
accelerating because the velocity changes in direction.

Figure 4-16 shows the relationship between the velocity and acceleration
vectors at various stages during uniform circular motion. Both vectors have
constant magnitude, but their directions change continuously. The velocity is
always directed tangent to the circle in the direction of motion. The accelera-
tion is always directed radially inward. Because of this, the acceleration associ-
ated with uniform circular motion is called a centripetal (meaning “center seek-
ing”) acceleration. As we prove next, the magnitude of this acceleration is

(centripetal acceleration), (4-34)

where r is the radius of the circle and v is the speed of the particle.
In addition, during this acceleration at constant speed, the particle travels the

circumference of the circle (a distance of 2pr) in time

(period). (4-35)

T is called the period of revolution, or simply the period, of the motion. It is, in
general, the time for a particle to go around a closed path exactly once.

Proof of Eq. 4-34
To find the magnitude and direction of the acceleration for uniform circular
motion, we consider Fig. 4-17. In Fig. 4-17a, particle p moves at constant speed
v around a circle of radius r. At the instant shown, p has coordinates xp and yp.

Recall from Module 4-2 that the velocity of a moving particle is always
tangent to the particle’s path at the particle’s position. In Fig. 4-17a, that means

is perpendicular to a radius r drawn to the particle’s position. Then the angle
u that makes with a vertical at p equals the angle u that radius r makes with
the x axis.

v:
v:

v:

T �
2
r

v

a �
v2

r

a:

Figure 4-16 Velocity and acceleration 
vectors for uniform circular motion.

v

v

v

a

a
a

The acceleration vector
always points toward the
center.

The velocity
vector is always
tangent to the path.

4-5 UNIFORM CIRCULAR MOTION

4.17 Apply the relationships between the radius of the circu-
lar path, the period, the particle’s speed, and the particle’s
acceleration magnitude.

Learning Objectives
After reading this module, you should be able to . . .

4.16 Sketch the path taken in uniform circular motion and ex-
plain the velocity and acceleration vectors (magnitude and
direction) during the motion.

arc, and is said to be centripetal. The time for the particle to
complete a circle is

T is called the period of revolution, or simply the period, of the
motion.

T �
2
r

v
.

a:
Key Ideas
● If a particle travels along a circle or circular arc of radius r at
constant speed v, it is said to be in uniform circular motion
and has an acceleration of constant magnitude

The direction of is toward the center of the circle or circulara:

a �
v2

r
.

a:
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Figure 4-17 Particle p moves in counter-
clockwise uniform circular motion. (a) Its
position and velocity at a certain
instant. (b) Velocity . (c) Acceleration .a:v:

v:

y

x
θ

θ
p

yp
r

xp

v

(a)
y

x

θ

vx

vy

v

(b)
y

x

φ

ax

ay
a

(c)

The scalar components of are shown in Fig. 4-17b. With them, we can write
the velocity as

. (4-36)

Now, using the right triangle in Fig. 4-17a, we can replace sin u with yp/r and
cos u with xp/r to write

(4-37)

To find the acceleration of particle p, we must take the time derivative of this
equation. Noting that speed v and radius r do not change with time, we obtain

(4-38)

Now note that the rate dyp/dt at which yp changes is equal to the velocity
component vy. Similarly, dxp/dt � vx, and, again from Fig. 4-17b, we see that vx �
�v sin u and vy � v cos u. Making these substitutions in Eq. 4-38, we find

. (4-39)

This vector and its components are shown in Fig. 4-17c. Following Eq. 3-6, we find

as we wanted to prove.To orient , we find the angle f shown in Fig. 4-17c:

.

Thus, f � u, which means that is directed along the radius r of Fig. 4-17a,
toward the circle’s center, as we wanted to prove.

a:

tan � �
ay

ax
�

�(v2/r) sin �
�(v2/r) cos �

� tan �

a:

a � 2ax
2 � ay

2 �
v2

r
2(cos �)2 � (sin �)2 �

v2

r
11 �

v2

r
,

a: � ��
v2

r
 cos �� î � ��

v2

r
 sin �� ĵ

a: �
dv:

dt
� ��

v

r

dyp

dt � î � � v

r

dxp

dt � ĵ.

a:

v: � ��
vyp

r �î � � vxp

r �ĵ .

v: � vx î � vy ĵ � (�v sin �)î � (v cos �)ĵ

v:
v:

Checkpoint 5
An object moves at constant speed along a circular path in a horizontal xy plane, with
the center at the origin. When the object is at x � �2 m, its velocity is �(4 m/s) . Give
the object’s (a) velocity and (b) acceleration at y � 2 m.

ĵ

Sample Problem 4.06 Top gun pilots in turns

KEY IDEAS

We assume the turn is made with uniform circular motion.
Then the pilot’s acceleration is centripetal and has magni-
tude a given by Eq. 4-34 (a � v2/R), where R is the circle’s
radius.Also, the time required to complete a full circle is the
period given by Eq. 4-35 (T � 2pR/v).

Calculations: Because we do not know radius R, let’s solve
Eq. 4-35 for R and substitute into Eq. 4-34.We find

To get the constant speed v, let’s substitute the components
of the initial velocity into Eq. 3-6:

v � 2(400 m/s)2 � (500 m/s)2 �  640.31 m/s.

a �
2
v
T

.

“Top gun” pilots have long worried about taking a turn too
tightly. As a pilot’s body undergoes centripetal acceleration,
with the head toward the center of curvature, the blood pres-
sure in the brain decreases, leading to loss of brain function.

There are several warning signs. When the centripetal
acceleration is 2g or 3g, the pilot feels heavy. At about 4g,
the pilot’s vision switches to black and white and narrows to
“tunnel vision.” If that acceleration is sustained or in-
creased, vision ceases and, soon after, the pilot is uncon-
scious—a condition known as g-LOC for “g-induced loss of
consciousness.”

What is the magnitude of the acceleration, in g units, of
a pilot whose aircraft enters a horizontal circular turn with a
velocity of (400î 500ĵ) m/s and 24.0 s later leaves the
turn with a velocity of ( 400î 500 ĵ) m/s?��v:

f
�

�v:i �
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4-6 RELATIVE MOTION IN ONE DIMENSION

frames that move relative to each other at constant velocity
and along a single axis.

Learning Objective
After reading this module, you should be able to . . .

4.18 Apply the relationship between a particle’s position, ve-
locity, and acceleration as measured from two reference

where is the velocity of B with respect to A. Both ob-
servers measure the same acceleration for the particle:

a:PA � a:PB.

v:BA

v:PA � v:PB � v:BA,

Key Idea
● When two frames of reference A and B are moving relative
to each other at constant velocity, the velocity of a particle P
as measured by an observer in frame A usually differs from
that measured from frame B. The two measured velocities are
related by

Relative Motion in One Dimension
Suppose you see a duck flying north at 30 km/h.To another duck flying alongside,
the first duck seems to be stationary. In other words, the velocity of a particle de-
pends on the reference frame of whoever is observing or measuring the velocity.
For our purposes, a reference frame is the physical object to which we attach our
coordinate system. In everyday life, that object is the ground. For example, the
speed listed on a speeding ticket is always measured relative to the ground. The
speed relative to the police officer would be different if the officer were moving
while making the speed measurement.

Suppose that Alex (at the origin of frame A in Fig. 4-18) is parked by the side
of a highway, watching car P (the “particle”) speed past. Barbara (at the origin of
frame B) is driving along the highway at constant speed and is also watching car P.
Suppose that they both measure the position of the car at a given moment. From
Fig. 4-18 we see that

xPA � xPB � xBA. (4-40)

The equation is read: “The coordinate xPA of P as measured by A is equal to the
coordinate xPB of P as measured by B plus the coordinate xBA of B as measured
by A.” Note how this reading is supported by the sequence of the subscripts.

Taking the time derivative of Eq. 4-40, we obtain

Thus, the velocity components are related by

vPA � vPB � vBA. (4-41)

This equation is read: “The velocity vPA of P as measured by A is equal to the

d
dt

 (xPA) �
d
dt

 (xPB) �
d
dt

 (xBA).Figure 4-18 Alex (frame A) and Barbara
(frame B) watch car P, as both B and P
move at different velocities along the com-
mon x axis of the two frames. At the
instant shown, xBA is the coordinate of B
in the A frame. Also, P is at coordinate xPB

in the B frame and coordinate xPA � xPB �
xBA in the A frame.

x

Frame A Frame B

vBA

P

x

yy

xPA = xPB + xBAxBA

xPB

Frame B moves past
frame A while both
observe P.

To find the period T of the motion, first note that the final
velocity is the reverse of the initial velocity. This means the
aircraft leaves on the opposite side of the circle from the ini-
tial point and must have completed half a circle in the given

24.0 s. Thus a full circle would have taken T � 48.0 s.
Substituting these values into our equation for a, we find

(Answer)a �
2
(640.31 m/s)

48.0 s
� 83.81 m/s2 � 8.6g.

Additional examples, video, and practice available at WileyPLUS
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velocity vPB of P as measured by B plus the velocity vBA of B as measured by A.”
The term vBA is the velocity of frame B relative to frame A.

Here we consider only frames that move at constant velocity relative to
each other. In our example, this means that Barbara (frame B) drives always at
constant velocity vBA relative to Alex (frame A). Car P (the moving particle),
however, can change speed and direction (that is, it can accelerate).

To relate an acceleration of P as measured by Barbara and by Alex, we take
the time derivative of Eq. 4-41:

Because vBA is constant, the last term is zero and we have

aPA � aPB. (4-42)

In other words,

d
dt

 (vPA) �
d
dt

 (vPB) �
d
dt

 (vBA).

Observers on different frames of reference that move at constant velocity relative
to each other will measure the same acceleration for a moving particle.

Sample Problem 4.07 Relative motion, one dimensional, Alex and Barbara

to relate the acceleration to the initial and final velocities
of P.

Calculation: The initial velocity of P relative to Alex is
vPA � �78 km/h and the final velocity is 0.Thus, the acceler-
ation relative to Alex is

(Answer)

(c) What is the acceleration aPB of car P relative to Barbara
during the braking?

KEY IDEA

To calculate the acceleration of car P relative to Barbara, we
must use the car’s velocities relative to Barbara.

Calculation: We know the initial velocity of P relative to
Barbara from part (a) (vPB � �130 km/h). The final veloc-
ity of P relative to Barbara is �52 km/h (because this is
the velocity of the stopped car relative to the moving
Barbara). Thus,

(Answer)

Comment: We should have foreseen this result: Because
Alex and Barbara have a constant relative velocity, they
must measure the same acceleration for the car.

� 2.2 m/s2.

aPB �
v � v0

t
�

�52 km/h � (�130 km/h)
10 s

1 m/s
3.6 km/h

� 2.2 m/s2.

aPA �
v � v0

t
�

0 � (�78 km/h)
10 s

1 m/s
3.6 km/h

In Fig. 4-18, suppose that Barbara’s velocity relative to Alex
is a constant vBA � 52 km/h and car P is moving in the nega-
tive direction of the x axis.

(a) If Alex measures a constant vPA � �78 km/h for car P,
what velocity vPB will Barbara measure?

KEY IDEAS

We can attach a frame of reference A to Alex and a frame of
reference B to Barbara. Because the frames move at constant
velocity relative to each other along one axis, we can use
Eq. 4-41 (vPA � vPB � vBA) to relate vPB to vPA and vBA.

Calculation: We find

�78 km/h � vPB � 52 km/h.

Thus, vPB � �130 km/h. (Answer)

Comment: If car P were connected to Barbara’s car by a
cord wound on a spool, the cord would be unwinding at
a speed of 130 km/h as the two cars separated.

(b) If car P brakes to a stop relative to Alex (and thus rela-
tive to the ground) in time t � 10 s at constant acceleration,
what is its acceleration aPA relative to Alex?

KEY IDEAS

To calculate the acceleration of car P relative to Alex, we
must use the car’s velocities relative to Alex. Because the
acceleration is constant, we can use Eq. 2-11 (v � v0 � at)

Additional examples, video, and practice available at WileyPLUS
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4-7 RELATIVE MOTION IN TWO DIMENSIONS

frames that move relative to each other at constant velocity
and in two dimensions.

Learning Objective
After reading this module, you should be able to . . .

4.19 Apply the relationship between a particle’s position, ve-
locity, and acceleration as measured from two reference

where is the velocity of B with respect to A. Both 
observers measure the same acceleration for the particle:

a:PA � a:PB.

v:BA

v:PA � v:PB � v:BA
,

Key Idea
● When two frames of reference A and B are moving relative
to each other at constant velocity, the velocity of a particle 
P as measured by an observer in frame A usually differs from
that measured from frame B. The two measured velocities are
related by

Relative Motion in Two Dimensions
Our two observers are again watching a moving particle P from the origins of refer-
ence frames A and B, while B moves at a constant velocity relative to A. (The
corresponding axes of these two frames remain parallel.) Figure 4-19 shows a cer-
tain instant during the motion.At that instant, the position vector of the origin of B
relative to the origin of A is .Also, the position vectors of particle P are rela-
tive to the origin of A and relative to the origin of B. From the arrangement of
heads and tails of those three position vectors, we can relate the vectors with

(4-43)

By taking the time derivative of this equation, we can relate the velocities 
and of particle P relative to our observers:

(4-44)

By taking the time derivative of this relation, we can relate the accelerations 
and of the particle P relative to our observers. However, note that because

is constant, its time derivative is zero.Thus, we get

(4-45)

As for one-dimensional motion, we have the following rule: Observers on differ-
ent frames of reference that move at constant velocity relative to each other will
measure the same acceleration for a moving particle.

a:PA � a:PB.

v:BA

a:PB

a:PA

v:PA � v:PB � v:BA.

v:PB

v:PA

r:PA � r:PB � r:BA.

r:PB

r:PAr:BA

v:BA

Figure 4-19 Frame B has the constant 
two-dimensional velocity relative to
frame A. The position vector of B relative
to A is . The position vectors of parti-
cle P are relative to A and
relative to B.
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v:BA
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Sample Problem 4.08 Relative motion, two dimensional, airplanes

In Fig. 4-20a, a plane moves due east while the pilot points
the plane somewhat south of east, toward a steady wind that
blows to the northeast. The plane has velocity relative
to the wind, with an airspeed (speed relative to the wind)
of 215 km/h, directed at angle u south of east. The wind
has velocity relative to the ground with speed 
65.0 km/h, directed 20.0° east of north. What is the magni-
tude of the velocity of the plane relative to the ground,
and what is ?�

v:PG

v:WG

v:PW

KEY IDEAS

The situation is like the one in Fig. 4-19. Here the moving par-
ticle P is the plane, frame A is attached to the ground (call it
G), and frame B is “attached” to the wind (call it W).We need
a vector diagram like Fig. 4-19 but with three velocity vectors.

Calculations: First we construct a sentence that relates the
three vectors shown in Fig. 4-20b:
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velocity of plane velocity of plane velocity of wind 
relative to ground

�
relative to wind

�
relative to ground.

(PG) (PW) (WG)

This relation is written in vector notation as

(4-46)

We need to resolve the vectors into components on the co-
ordinate system of Fig. 4-20b and then solve Eq. 4-46 axis by
axis. For the y components, we find

vPG,y � vPW,y � vWG,y

or 0 � �(215 km/h) sin u � (65.0 km/h)(cos 20.0°).

Solving for u gives us

(Answer)

Similarly, for the x components we find

vPG,x � vPW,x � vWG,x.

Here, because is parallel to the x axis, the component
vPG,x is equal to the magnitude vPG. Substituting this nota-
tion and the value u � 16.5°, we find

vPG � (215 km/h)(cos 16.5°) � (65.0 km/h)(sin 20.0°)

� 228 km/h. (Answer)

v:PG

� � sin�1 (65.0 km/h)(cos 20.0�)
215 km/h

� 16.5�.

v:PG � v:PW � v:WG. θ

θ

vPG

vPW vWG

vPG

vPW vWG

N

y

N
E

20°

x

(a)

(b)

This is the plane's actual
direction of travel.

This is the wind
direction.

The actual direction
is the vector sum of
the other two vectors
(head-to-tail arrangement).

This is the plane's
orientation.

Figure 4-20 A plane flying in a wind.

Additional examples, video, and practice available at WileyPLUS

Review & Summary

Position Vector The location of a particle relative to the ori-
gin of a coordinate system is given by a position vector , which in
unit-vector notation is

(4-1)

Here x , y , and z are the vector components of position vector ,
and x, y, and z are its scalar components (as well as the coordinates
of the particle). A position vector is described either by a magni-
tude and one or two angles for orientation, or by its vector or
scalar components.

Displacement If a particle moves so that its position vector
changes from to , the particle’s displacement is

(4-2)

The displacement can also be written as

(4-3)

� �x � �y � �z . (4-4)

Average Velocity and Instantaneous Velocity If a parti-
cle undergoes a displacement in time interval �t, its average ve-
locity for that time interval is

(4-8)v:avg �
� r:

�t
.

v:avg

� r:

k̂ĵî

� r: � (x2 � x1)î � (y2 � y1)ĵ � (z2 � z1)k̂

� r: � r:2 � r:1.

� r:r:2r:1

r:k̂ĵî

r: � x î � y ĵ � zk̂.

r:
As �t in Eq. 4-8 is shrunk to 0, reaches a limit called either the
velocity or the instantaneous velocity :

(4-10)

which can be rewritten in unit-vector notation as

(4-11)

where vx � dx /dt, vy � dy/dt, and vz � dz /dt. The instantaneous
velocity of a particle is always directed along the tangent to the
particle’s path at the particle’s position.

Average Acceleration and Instantaneous Acceleration
If a particle’s velocity changes from to in time interval �t, its
average acceleration during �t is

(4-15)

As �t in Eq. 4-15 is shrunk to 0, reaches a limiting value calleda:avg

a:avg �
v:2 � v:1

�t
�

�v:

�t
.

v:2v:1

v:

v: � vx î � vy ĵ � vzk̂,

v: �
d r:

dt
,

v:
v:avg

either the acceleration or the instantaneous acceleration :

(4-16)
In unit-vector notation,

(4-17)

where ax � dvx/dt, ay � dvy/dt, and az � dvz/dt.

a: � ax î � ay ĵ � azk̂,

a: �
d v:

dt
.

a:
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Figure 4-23 Question 5.

(a) (b) (c)

Projectile Motion Projectile motion is the motion of a particle
that is launched with an initial velocity . During its flight, the par-
ticle’s horizontal acceleration is zero and its vertical acceleration is
the free-fall acceleration �g. (Upward is taken to be a positive di-
rection.) If is expressed as a magnitude (the speed v0) and an an-
gle u0 (measured from the horizontal), the particle’s equations of
motion along the horizontal x axis and vertical y axis are

v:0

v:0

Questions

1 Figure 4-21 shows the path taken by
a skunk foraging for trash food, from
initial point i. The skunk took the same
time T to go from each labeled point to
the next along its path. Rank points a, b,
and c according to the magnitude of the
average velocity of the skunk to reach
them from initial point i, greatest first.

2 Figure 4-22 shows the initial posi-
tion i and the final position f of a parti-
cle. What are the (a) initial position
vector and (b) final position vector , both in unit-vector nota-rf

:r:i

Figure 4-21
Question 1.

a i b c

Figure 4-22 Question 2.

z

x

i

f

y

4 m
4 m

1 m

2 m
3 m

3 m

3 m 5 m

twice as long as at 45º. Does that result mean that the air density at
high altitudes increases with altitude or decreases?

4 You are to launch a rocket, from just above the ground, with
one of the following initial velocity vectors: (1) ,
(2) , (3) , (4) . In
your coordinate system, x runs along level ground and y increases
upward. (a) Rank the vectors according to the launch speed of the
projectile, greatest first. (b) Rank the vectors according to the time
of flight of the projectile, greatest first.

5 Figure 4-23 shows three situations in which identical projectiles
are launched (at the same level) at identical initial speeds and an-
gles. The projectiles do not land on the same terrain, however.
Rank the situations according to the final speeds of the projectiles
just before they land, greatest first.

�20î � 70ĵv:0 �v:0 � 20î � 70ĵv:0 � �20î � 70ĵ
20î � 70ĵv:0 �

Uniform Circular Motion If a particle travels along a circle or
circular arc of radius r at constant speed v, it is said to be in uniform
circular motion and has an acceleration of constant magnitude

(4-34)

The direction of is toward the center of the circle or circular arc,
and is said to be centripetal. The time for the particle to complete
a circle is

. (4-35)

T is called the period of revolution, or simply the period, of the
motion.

Relative Motion When two frames of reference A and B are
moving relative to each other at constant velocity, the velocity of a par-
ticle P as measured by an observer in frame A usually differs from that
measured from frame B.The two measured velocities are related by

(4-44)

where is the velocity of B with respect to A. Both observers
measure the same acceleration for the particle:

(4-45)a:PA � a:PB.

v:BA

v:PA � v:PB � v:BA,

T �
2
r

v

a:
a:

a �
v2

r
.

a:

x � x0 � (v0 cos u0)t, (4-21)

, (4-22)

vy � v0 sin u0 � gt, (4-23)

. (4-24)

The trajectory (path) of a particle in projectile motion is parabolic
and is given by

, (4-25)

if x0 and y0 of Eqs. 4-21 to 4-24 are zero. The particle’s horizontal
range R, which is the horizontal distance from the launch point to
the point at which the particle returns to the launch height, is

(4-26)R �
v2

0

g
 sin 2�0.

y � (tan �0)x �
gx2

2(v0 cos �0)2

v2
y � (v0 sin �0)2 � 2g(y � y0)

y � y0 � (v0 sin �0)t � 1
2gt2

3 When Paris was shelled from 100 km away with the WWI
long-range artillery piece “Big Bertha,” the shells were fired at an
angle greater than 45º to give them a greater range, possibly even

6 The only good use of a fruitcake
is in catapult practice. Curve 1 in
Fig. 4-24 gives the height y of a cata-
pulted fruitcake versus the angle u
between its velocity vector and its
acceleration vector during flight. (a)
Which of the lettered points on that
curve corresponds to the landing of
the fruitcake on the ground? (b)
Curve 2 is a similar plot for the same

y

θ 
A B

2

1

Figure 4-24 Question 6.

tion? (c) What is the x component of displacement ?� r:
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launch speed but for a different launch angle. Does the fruitcake
now land farther away or closer to the launch point?

7 An airplane flying horizontally at a constant speed of 350 km/h
over level ground releases a bundle of food supplies. Ignore the ef-
fect of the air on the bundle. What are the bundle’s initial (a) verti-
cal and (b) horizontal components of velocity? (c) What is its hori-
zontal component of velocity just before hitting the ground? (d) If
the airplane’s speed were, instead, 450 km/h, would the time of fall
be longer, shorter, or the same?

8 In Fig. 4-25, a cream tangerine is thrown up past windows 1, 2,
and 3, which are identical in size and regularly spaced vertically.
Rank those three windows according to (a) the time the cream tan-
gerine takes to pass them and (b) the average speed of the cream
tangerine during the passage, greatest first.

The cream tangerine then moves down past windows 4, 5,
and 6, which are identical in size and irregularly spaced horizon-
tally. Rank those three windows according to (c) the time the
cream tangerine takes to pass them and (d) the average speed of
the cream tangerine during the passage, greatest first.

11 Figure 4-28 shows four tracks (either half- or quarter-circles)
that can be taken by a train, which moves at a constant speed.
Rank the tracks according to the magnitude of a train’s accelera-
tion on the curved portion, greatest first.

1

2

3
4

5

6

Figure 4-25 Question 8.

R

θ 0

b
a

c

Figure 4-27 Question 10.

3

4

2

1

Figure 4-28 Question 11.

x

y

θ 
r

P

Figure 4-29 Question 12.

1 2 3

Figure 4-26 Question 9.

10 A ball is shot from ground level over level ground at a certain
initial speed. Figure 4-27 gives the range R of the ball versus its
launch angle u0. Rank the three lettered points on the plot accord-
ing to (a) the total flight time of the ball and (b) the ball’s speed at
maximum height, greatest first.

12 In Fig. 4-29, particle P is in uniform circular motion, cen-
tered on the origin of an xy coordinate system. (a) At what values
of u is the vertical component ry of the position vector greatest in
magnitude? (b) At what values of u is the vertical component vy

of the particle’s velocity greatest in magnitude? (c) At what val-
ues of u is the vertical component ay of the particle’s acceleration
greatest in magnitude?

13 (a) Is it possible to be accelerating while traveling at constant
speed? Is it possible to round a curve with (b) zero acceleration and
(c) a constant magnitude of acceleration?

14 While riding in a moving car, you toss an egg directly upward.
Does the egg tend to land behind you, in front of you, or back in your
hands if the car is (a) traveling at a constant speed, (b) increasing in
speed, and (c) decreasing in speed?

15 A snowball is thrown from ground level (by someone in a
hole) with initial speed v0 at an angle of 45° relative to the (level)
ground, on which the snowball later lands. If the launch angle is in-
creased, do (a) the range and (b) the flight time increase, decrease,
or stay the  same? 

16 You are driving directly behind a pickup truck, going at the
same speed as the truck. A crate falls from the bed of the truck to
the road. (a) Will your car hit the crate before the crate hits the
road if you neither brake nor swerve? (b) During the fall, is the
horizontal speed of the crate more than, less than, or the same as
that of the truck?

17 At what point in the path of a projectile is the speed a minimum?

18 In shot put, the shot is put (thrown) from above the athlete’s
shoulder level. Is the launch angle that produces the greatest range
45°, less than 45°, or greater than 45°?

9 Figure 4-26 shows three paths for a football kicked from ground
level. Ignoring the effects of air, rank the paths according to (a) time
of flight, (b) initial vertical velocity component, (c) initial horizontal
velocity component, and (d) initial speed, greatest first.
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Module 4-1 Position and Displacement
•1 The position vector for an electron is 

. (a) Find the magnitude of . (b) Sketch the
vector on a right-handed coordinate system.
•2 A watermelon seed has the following coordinates: x � �5.0 m,
y � 8.0 m, and z � 0 m. Find its position vector (a) in unit-vector no-
tation and as (b) a magnitude and (c) an angle relative to the positive
direction of the x axis. (d) Sketch the vector on a right-handed coor-
dinate system. If the seed is moved to the xyz coordinates (3.00 m,
0 m, 0 m), what is its displacement (e) in unit-vector notation and as
(f) a magnitude and (g) an angle relative to the positive x direction?

•3 A positron undergoes a displacement ,
ending with the position vector , in meters. What
was the positron’s initial position vector?

••4 The minute hand of a wall clock measures 10 cm from its tip to
the axis about which it rotates. The magnitude and angle of the dis-
placement vector of the tip are to be determined for three time inter-
vals. What are the (a) magnitude and (b) angle from a quarter after
the hour to half past, the (c) magnitude and (d) angle for the next half
hour, and the (e) magnitude and (f) angle for the hour after that?

Module 4-2 Average Velocity and Instantaneous Velocity
•5 A train at a constant 60.0 km/h moves east for 40.0 min,
then in a direction 50.0° east of due north for 20.0 min, and then
west for 50.0 min. What are the (a) magnitude and (b) angle of its
average velocity during this trip?

•6 An electron’s position is given by ,
with t in seconds and in meters. (a) In unit-vector notation, what
is the electron’s velocity ? At t 2.00 s, what is (b) in unit-
vector notation and as (c) a magnitude and (d) an angle relative to
the positive direction of the x axis?

•7 An ion’s position vector is initially ,
and 10 s later it is , all in meters. In unit-
vector notation, what is its during the 10 s?

••8 A plane flies 483 km east from city A to city B in 45.0 min and
then 966 km south from city B to city C in 1.50 h. For the total trip,
what are the (a) magnitude and (b) direction of the plane’s dis-
placement, the (c) magnitude
and (d) direction of its aver-
age velocity, and (e) its aver-
age speed?

••9 Figure 4-30 gives the
path of a squirrel moving
about on level ground, from
point A (at time t � 0), to
points B (at t � 5.00 min), C
(at t � 10.0 min), and finally D
(at t � 15.0 min). Consider the
average velocities of the squir-
rel from point A to each of the
other three points. Of them,
what are the (a) magnitude

v:avg

r: � �2.0î � 8.0ĵ � 2.0k̂
2.0k̂6.0ĵ �r: � 5.0î �

v:�v:(t)
r:

4.00t2ĵ � 2.00k̂r: � 3.00t î �

SSM

r: � 3.0ĵ � 4.0k̂
3.0ĵ � 6.0k̂� r: � 2.0î �

r:(3.0 m)ĵ � (2.0 m)k̂
r: � (5.0 m)î �

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

and (b) angle of the one with the
least magnitude and the (c) magni-
tude and (d) angle of the one with
the greatest magnitude?

•••10 The position vector
locates a

particle as a function of time t.
Vector is in meters, t is in seconds,
and factors e and f are constants.
Figure 4-31 gives the angle u of the
particle’s direction of travel as a
function of t (u is measured from
the positive x direction). What are (a) e and (b) f, including units?

Module 4-3 Average Acceleration and 
Instantaneous Acceleration
•11 The position of a particle moving in an xy plane is givenr:

r:

r: � 5.00t î � (et � ft2)ĵ

D

CA

B

25 50

50

25

0

–25

–50

y (m)

x (m)

Figure 4-30 Problem 9.

θ 

20°

0°

–20°

10 20

t (s)

Figure 4-31 Problem 10.

by , with in meters and t
in seconds. In unit-vector notation, calculate (a) , (b) , and (c) 
for t 2.00 s. (d) What is the angle between the positive direction
of the x axis and a line tangent to the particle’s path at t 2.00 s? 

•12 At one instant a bicyclist is 40.0 m due east of a park’s flag-
pole, going due south with a speed of 10.0 m/s.Then 30.0 s later, the
cyclist is 40.0 m due north of the flagpole, going due east with a
speed of 10.0 m/s. For the cyclist in this 30.0 s interval, what are the
(a) magnitude and (b) direction of the displacement, the (c) magni-
tude and (d) direction of the average velocity, and the (e) magni-
tude and (f) direction of the average acceleration?

•13 A particle moves so that its position (in meters) asSSM

�
�

a:v:r:
r:r: � (2.00t3 � 5.00t)î � (6.00 � 7.00t4)ĵ

given by , with in meters per second
and t (> 0) in seconds. (a) What is the acceleration when t 3.0 s?
(b) When (if ever) is the acceleration zero? (c) When (if ever) is
the velocity zero? (d) When (if ever) does the speed equal
10 m/s?

••17 A cart is propelled over an xy plane with acceleration compo-
nents ax � 4.0 m/s2 and ay � �2.0 m/s2. Its initial velocity has com-
ponents v0x � 8.0 m/s and v0y � 12 m/s. In unit-vector notation, what
is the velocity of the cart when it reaches its greatest y coordinate?

••18 A moderate wind accelerates a pebble over a horizontal xy
plane with a constant acceleration .(7.00 m/s2)ĵa: � (5.00 m/s2)î �

�
v:v: � (6.0t � 4.0t2)î � 8.0ĵ

a function of time (in seconds) is . Write expres-
sions for (a) its velocity and (b) its acceleration as functions of time.

•14 A proton initially has and then 
4.0 s later has (in meters per second). For
that 4.0 s, what are (a) the proton’s average acceleration in unit-
vector notation, (b) the magnitude of , and (c) the angle between

and the positive direction of the x axis?

••15 A particle leaves the origin with an initial veloc-
ity and a constant acceleration 

. When it reaches its maximum x coordinate, what are
its (a) velocity and (b) position vector?

••16 The velocity of a particle moving in the xy plane isv:

0.500ĵ) m/s2
a: � (�1.00î �(3.00î) m/sv: �

ILWSSM

a:avg

a:avg

a:avg

v: � �2.0î � 2.0ĵ � 5.0k̂
v: � 4.0î � 2.0ĵ � 3.0k̂

r: � î � 4t2ĵ � tk̂

http://www.wiley.com/college/halliday
www.flyingcircusofphysics.com
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••27 A certain airplane has a
speed of 290.0 km/h and is diving
at an angle of 30.0° below the
horizontal when the pilot releases
a radar decoy (Fig. 4-33). The hori-
zontal distance between the re-
lease point and the point where
the decoy strikes the ground is d �
700 m. (a) How long is the decoy in
the air? (b) How high was the re-
lease point?

••28 In Fig. 4-34, a stone is pro-
jected at a cliff of height h with an initial speed of 42.0 m/s directed
at angle u0 � 60.0° above the horizontal. The stone strikes at A,
5.50 s after launching. Find (a) the height h of the cliff, (b) the
speed of the stone just before impact at A, and (c) the maximum
height H reached above the ground.

� �

ILWAt time t 0, the velocity is (4.00 m/s)i. What are the (a) magni-
tude and (b) angle of its velocity when it has been displaced by
12.0 m parallel to the x axis?

•••19 The acceleration of a particle moving only on a horizontal
xy plane is given by , where is in meters per second-
squared and t is in seconds. At t 0, the position vector

locates the particle, which then has the
velocity vector . At t 4.00 s, what
are (a) its position vector in unit-vector notation and (b) the angle
between its direction of travel and the positive direction of the
x axis?

•••20 In Fig. 4-32, particle A
moves along the line y 30 m
with a constant velocity of mag-
nitude 3.0 m/s and parallel to the
x axis. At the instant particle A
passes the y axis, particle B leaves
the origin with a zero initial speed
and a constant acceleration of
magnitude 0.40 m/s2. What angle u
between and the positive direc-
tion of the y axis would result in a
collision?

Module 4-4 Projectile Motion
•21 A dart is thrown horizontally with an initial speed of 
10 m/s toward point P, the bull’s-eye on a dart board. It hits at
point Q on the rim, vertically below P, 0.19 s later. (a) What is the
distance PQ? (b) How far away from the dart board is the dart
released?

•22 A small ball rolls horizontally off the edge of a tabletop that
is 1.20 m high. It strikes the floor at a point 1.52 m horizontally
from the table edge. (a) How long is the ball in the air? (b) What is
its speed at the instant it leaves the table?

•23 A projectile is fired horizontally from a gun that is 
45.0 m above flat ground, emerging from the gun with a speed of
250 m/s. (a) How long does the projectile remain in the air? (b) At
what horizontal distance from the firing point does it strike the
ground? (c) What is the magnitude of the vertical component of its
velocity as it strikes the ground?

•24 In the 1991 World Track and Field Championships in
Tokyo, Mike Powell jumped 8.95 m, breaking by a full 5 cm the 
23-year long-jump record set by Bob Beamon. Assume that
Powell’s speed on takeoff was 9.5 m/s (about equal to that of a
sprinter) and that g 9.80 m/s2 in Tokyo. How much less was
Powell’s range than the maximum possible range for a particle
launched at the same speed?

•25 The current world-record motorcycle jump is 77.0 m,
set by Jason Renie. Assume that he left the take-off ramp at 
12.0º to the horizontal and that the take-off and landing 
heights are the same. Neglecting air drag, determine his take-off
speed.

•26 A stone is catapulted at time t 0, with an initial velocity of
magnitude 20.0 m/s and at an angle of 40.0° above the horizontal.
What are the magnitudes of the (a) horizontal and (b) vertical
components of its displacement from the catapult site at t 1.10 s?
Repeat for the (c) horizontal and (d) vertical components at 
t 1.80 s, and for the (e) horizontal and (f) vertical components at
t 5.00 s.�

�

�

�

�

a:

a:

v:
�

�v: � (5.00 m/s)î � (2.00 m/s)ĵ
r: � (20.0 m)î � (40.0 m)ĵ

�
a:a: � 3t î � 4t ĵ

î�

xB

A

y

θ 

v

a

Figure 4-32 Problem 20.

θ 

d

Figure 4-33 Problem 27.

0

H

h

A

θ 

Figure 4-34 Problem 28.

••29 A projectile’s launch speed is five times its speed at maxi-
mum height. Find launch angle .

••30 A soccer ball is kicked from the ground with an initial
speed of 19.5 m/s at an upward angle of 45°. A player 55 m away in
the direction of the kick starts running to meet the ball at that in-
stant. What must be his average speed if he is to meet the ball just
before it hits the ground?

••31 In a jump spike, a volleyball player slams the ball from
overhead and toward the opposite floor. Controlling the angle of
the spike is difficult. Suppose a ball is spiked from a height of 2.30
m with an initial speed of 20.0 m/s at a downward angle of 18.00°.
How much farther on the opposite floor would it have landed if the
downward angle were, instead, 8.00°?

••32 You throw a ball toward a
wall at speed 25.0 m/s and at angle

40.0° above the horizontal
(Fig. 4-35). The wall is distance d
22.0 m from the release point of the
ball. (a) How far above the release
point does the ball hit the wall?
What are the (b) horizontal and
(c) vertical components of its velocity as it hits the wall? (d) When
it hits, has it passed the highest point on its trajectory?

••33 A plane, diving with constant speed at an angle of
53.0° with the vertical, releases a projectile at an altitude of 730 m.
The projectile hits the ground 5.00 s after release. (a) What is the
speed of the plane? (b) How far does the projectile travel horizon-
tally during its flight? What are the (c) horizontal and (d) vertical
components of its velocity just before striking the ground?

••34 A trebuchet was a hurling machine built to attack the
walls of a castle under siege. A large stone could be hurled against a
wall to break apart the wall. The machine was not placed near the
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of 9.1 m, its velocity is , with horizontal and 
upward. (a) To what maximum height does the ball rise? (b) What
total horizontal distance does the ball travel? What are the
(c) magnitude and (d) angle (below the horizontal) of the ball’s ve-
locity just before it hits the ground?

••44 A baseball leaves a pitcher’s hand horizontally at a speed of
161 km/h.The distance to the batter is 18.3 m. (a) How long does the
ball take to travel the first half of that distance? (b) The second half?
(c) How far does the ball fall freely during the first half? (d) During
the second half? (e) Why aren’t the quantities in (c) and (d) equal?

••45 In Fig. 4-40, a ball is launched with a velocity of magnitude
10.0 m/s, at an angle of 50.0° to the horizontal.The launch point is at
the base of a ramp of horizon-
tal length d1 6.00 m and
height d2 � 3.60 m. A plateau
is located at the top of the
ramp. (a) Does the ball land on
the ramp or the plateau? When
it lands, what are the (b) mag-
nitude and (c) angle of its dis-
placement from the launch point?

••46 In basketball, hang is an illusion in which a player
seems to weaken the gravitational acceleration while in midair.The
illusion depends much on a skilled player’s ability to rapidly shift

�
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86 CHAPTER 4 MOTION IN TWO AND THREE DIMENSIONS

wall because then arrows could reach it from the castle wall. Instead,
it was positioned so that the stone hit the wall during the second half
of its flight. Suppose a stone is launched with a speed of v0 � 28.0 m/s
and at an angle of u0 � 40.0°. What is the speed of the stone if it hits
the wall (a) just as it reaches the top of its parabolic path and (b)
when it has descended to half that height? (c) As a percentage, how
much faster is it moving in part (b) than in part (a)?

••35 A rifle that shoots bullets at 460 m/s is to be aimed at
a target 45.7 m away. If the center of the target is level with the ri-
fle, how high above the target must the rifle barrel be pointed so
that the bullet hits dead center?

••36 During a tennis match, a player serves the ball at 
23.6 m/s, with the center of the ball leaving the racquet horizontally
2.37 m above the court surface. The net is 12 m away and 0.90 m
high. When the ball reaches the net, (a) does the ball clear it and
(b) what is the distance between the center of the ball and the top
of the net? Suppose that, instead, the ball is served as before but
now it leaves the racquet at 5.00° below the horizontal. When the
ball reaches the net, (c) does the ball clear it and (d) what now is
the distance between the center of the ball and the top of the net?

••37 A lowly high diver pushes off horizontally
with a speed of 2.00 m/s from the platform edge 10.0 m above the
surface of the water. (a) At what horizontal distance from the
edge is the diver 0.800 s after pushing off? (b) At what vertical
distance above the surface of the water is the diver just then?
(c) At what horizontal distance from the edge does the diver
strike the water?

••38 A golf ball is struck at
ground level. The speed of
the golf ball as a function of
the time is shown in Fig. 4-36,
where t � 0 at the instant the
ball is struck. The scaling on
the vertical axis is set by

and .
(a) How far does the golf
ball travel horizontally be-
fore returning to ground
level? (b) What is the maximum height above ground level at-
tained by the ball?

••39 In Fig. 4-37, a ball is thrown leftward from the left edge of the
roof, at height h above the ground. The ball hits the ground 1.50 s
later, at distance d � 25.0 m from the building and at angle u � 60.0°
with the horizontal. (a) Find h.
(Hint: One way is to reverse the
motion, as if on video.) What
are the (b) magnitude and (c)
angle relative to the horizontal
of the velocity at which the ball
is thrown? (d) Is the angle
above or below the horizontal?

••40 Suppose that a shot putter can put a shot at the world-
class speed 15.00 m/s and at a height of 2.160 m. What hori-
zontal distance would the shot travel if the launch angle is
(a) 45.00° and (b) 42.00°? The answers indicate that the angle of
45°, which maximizes the range of projectile motion, does not max-
imize the horizontal distance when the launch and landing are at
different heights.

�0

v0 �

vb � 31 m/sva � 19 m/s
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••41 Upon spotting an in-
sect on a twig overhanging water, an
archer fish squirts water drops at the
insect to knock it into the water
(Fig. 4-38).Although the fish sees the
insect along a straight-line path at an-
gle f and distance d, a drop must be
launched at a different angle u0 if its
parabolic path is to intersect the
insect. If f � 36.0° and d � 0.900 m,
what launch angle u0 is required for the drop to be at the top of the
parabolic path when it reaches the insect?

••42 In 1939 or 1940, Emanuel Zacchini took his human-
cannonball act to an extreme: After being shot from a cannon, he
soared over three Ferris wheels and into a net (Fig. 4-39). Assume
that he is launched with a speed of 26.5 m/s and at an angle of 53.0°.
(a) Treating him as a particle, calculate his clearance over the first
wheel. (b) If he reached maximum height over the middle wheel, by
how much did he clear it? (c) How far from the cannon should the
net’s center have been positioned (neglect air drag)?

Insect
on twig

d

φ 

Archer fish

Figure 4-38 Problem 41.

••43 A ball is shot from the ground into the air. At a heightILW

Ball

d1

d2
v0

Figure 4-40 Problem 45.
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the ball between hands during the flight, but it might also be sup-
ported by the longer horizontal distance the player travels in the
upper part of the jump than in the lower part. If a player jumps
with an initial speed of v0 � 7.00 m/s at an angle of u0 � 35.0°,
what percent of the jump’s range does the player spend in the up-
per half of the jump (between maximum height and half maxi-
mum height)?

••47 A batter hits a pitched ball when the center of
the ball is 1.22 m above the ground. The ball leaves the bat at an
angle of 45° with the ground.With that launch, the ball should have
a horizontal range (returning to the launch level) of 107 m. (a)
Does the ball clear a 7.32-m-high fence that is 97.5 m horizontally
from the launch point? (b) At the fence, what is the distance be-
tween the fence top and the ball center?

••48 In Fig. 4-41, a ball is
thrown up onto a roof, landing
4.00 s later at height h 20.0 m
above the release level. The
ball’s path just before landing is
angled at u � 60.0° with the
roof. (a) Find the horizontal dis-
tance d it travels. (See the hint
to Problem 39.) What are the
(b) magnitude and (c) angle
(relative to the horizontal) of
the ball’s initial velocity?

•••49 A football kicker can give the ball an initial speed of 
25 m/s. What are the (a) least and (b) greatest elevation angles at
which he can kick the ball to score a field goal from a point 50 m in
front of goalposts whose horizontal bar is 3.44 m above the ground?

•••50 Two seconds after being projected from ground level, a
projectile is displaced 40 m horizontally and 53 m vertically
above its launch point. What are the (a) horizontal and (b)
vertical components of the initial velocity of the projectile? (c)
At the instant the projectile achieves its maximum height above
ground level, how far is it displaced horizontally from the launch
point?

•••51 A skilled skier knows to jump upward before reaching a
downward slope. Consider a jump in which the launch speed is 
v0 � 10 m/s, the launch angle is u0 � 11.3°, the initial course is
approximately flat, and the steeper track has a slope of 9.0°.
Figure 4-42a shows a prejump that allows the skier to land on the top
portion of the steeper track. Figure 4-42b shows a jump at the edge
of the steeper track. In Fig. 4-42a, the skier lands at approximately
the launch level. (a) In the landing, what is the angle f between the
skier’s path and the slope? In Fig. 4-42b, (b) how far below the
launch level does the skier land and (c) what is f? (The greater fall
and greater f can result in loss of control in the landing.)

SSM

�

WWWSSM

h

d

θ

Figure 4-41 Problem 48.

(a) (b)

Figure 4-42 Problem 51.

•••52 A ball is to be shot from level ground toward a wall at dis-
tance x (Fig. 4-43a). Figure 4-43b shows the y component vy of the
ball’s velocity just as it would reach the wall, as a function of that
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Figure 4-43 Problem 52.

•••53 In Fig. 4-44, a baseball is hit at a height h � 1.00 m and
then caught at the same height. It travels alongside a wall, moving
up past the top of the wall 1.00 s after it is hit and then down past
the top of the wall 4.00 s later, at distance D � 50.0 m farther along
the wall. (a) What horizontal distance is traveled by the ball from
hit to catch? What are the (b) magnitude and (c) angle (relative to
the horizontal) of the ball’s velocity just after being hit? (d) How
high is the wall?

D

h h

Figure 4-44 Problem 53.

•••54 A ball is to be shot from
level ground with a certain speed.
Figure 4-45 shows the range R it will
have versus the launch angle u0. The
value of u0 determines the flight
time; let tmax represent the maximum
flight time. What is the least speed
the ball will have during its flight if
u0 is chosen such that the flight time
is 0.500tmax?

•••55 A ball rolls horizontally off the top of a stairway with
a speed of 1.52 m/s. The steps are 20.3 cm high and 20.3 cm wide.
Which step does the ball hit first?

Module 4-5 Uniform Circular Motion
•56 An Earth satellite moves in a circular orbit 640 km 
(uniform circular motion) above Earth’s surface with a period of
98.0 min. What are (a) the speed and (b) the magnitude of the
centripetal acceleration of the satellite?

•57 A carnival merry-go-round rotates about a vertical axis at a
constant rate. A man standing on the edge has a constant speed of
3.66 m/s and a centripetal acceleration of magnitude 1.83 m/s2.
Position vector locates him relative to the rotation axis. (a) What
is the magnitude of ? What is the direction of when is di-
rected (b) due east and (c) due south?

•58 A rotating fan completes 1200 revolutions every minute.
Consider the tip of a blade, at a radius of 0.15 m. (a) Through what
distance does the tip move in one revolution? What are (b) the
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distance x. The scaling is set by m/s and What
is the launch angle?

xs � 20 m.vys � 5.0
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tip’s speed and (c) the magnitude of its acceleration? (d) What is
the period of the motion?

•59 A woman rides a carnival Ferris wheel at radius 15 m,
completing five turns about its horizontal axis every minute. What
are (a) the period of the motion, the (b) magnitude and (c) direction
of her centripetal acceleration at the highest point, and the (d) mag-
nitude and (e) direction of her centripetal acceleration at the lowest
point?

•60 A centripetal-acceleration addict rides in uniform circular
motion with radius r � 3.00 m. At one instant his acceleration is

. At that instant, what are the val-
ues of (a) and (b) ?

•61 When a large star becomes a supernova, its core may be
compressed so tightly that it becomes a neutron star, with a radius of
about 20 km (about the size of the San Francisco area). If a neutron
star rotates once every second, (a) what is the speed of a particle on
the star’s equator and (b) what is the magnitude of the particle’s cen-
tripetal acceleration? (c) If the neutron star rotates faster, do the an-
swers to (a) and (b) increase, decrease, or remain the same?

•62 What is the magnitude of the acceleration of a sprinter run-
ning at 10 m/s when rounding a turn of radius 25 m?

••63 At t1 � 2.00 s, the acceleration of a particle in counter-
clockwise circular motion is (6.00 m/s2) (4.00 m/s2) . It moves at
constant speed. At time t2 5.00 s, the particle’s acceleration is
(4.00 m/s2) (�6.00 m/s2) . What is the radius of the path taken
by the particle if t2 t1 is less than one period?

••64 A particle moves horizontally in uniform circular motion,
over a horizontal xy plane. At one instant, it moves through the
point at coordinates (4.00 m, 4.00 m) with a velocity of �5.00 m/s
and an acceleration of �12.5 m/s2. What are the (a) x and (b) y
coordinates of the center of the circular path?

••65 A purse at radius 2.00 m and a wallet at radius 3.00 m travel
in uniform circular motion on the floor of a merry-go-round as the
ride turns. They are on the same radial line. At one instant, the ac-
celeration of the purse is (2.00 m/s2) � (4.00 m/s2) . At that instant
and in unit-vector notation, what is the acceleration of the wallet?

••66 A particle moves along a circular path over a horizontal xy
coordinate system, at constant speed.At time t1 � 4.00 s, it is at point
(5.00 m, 6.00 m) with velocity (3.00 m/s) and acceleration in the
positive x direction. At time t2 10.0 s, it has velocity ( 3.00 m/s)
and acceleration in the positive y direction. What are the (a) x and
(b) y coordinates of the center of the circular path if t2 � t1 is less
than one period?

•••67 A boy whirls a stone in a horizontal circle of
radius 1.5 m and at height 2.0 m above level ground. The string
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Module 4-6 Relative Motion in One Dimension
•69 A cameraman on a pickup truck is traveling westward at
20 km/h while he records a cheetah that is moving westward
30 km/h faster than the truck. Suddenly, the cheetah stops, turns,
and then runs at 45 km/h eastward, as measured by a suddenly
nervous crew member who stands alongside the cheetah’s path. The
change in the animal’s velocity takes 2.0 s. What are the (a) magni-
tude and (b) direction of the animal’s acceleration according to the
cameraman and the (c) magnitude and (d) direction according to
the nervous crew member?

•70 A boat is traveling upstream in the positive direction of an x
axis at 14 km/h with respect to the water of a river. The water is
flowing at 9.0 km/h with respect to the ground. What are the (a)
magnitude and (b) direction of the boat’s velocity with respect to
the ground? A child on the boat walks from front to rear at 
6.0 km/h with respect to the boat. What are the (c) magnitude and
(d) direction of the child’s velocity with respect to the ground?

••71 A suspicious-looking man runs as fast as he can along a
moving sidewalk from one end to the other, taking 2.50 s. Then se-
curity agents appear, and the man runs as fast as he can back along
the sidewalk to his starting point, taking 10.0 s. What is the ratio of
the man’s running speed to the sidewalk’s speed?

Module 4-7 Relative Motion in Two Dimensions
•72 A rugby player runs with the ball directly toward his
opponent’s goal, along the positive direction of an x axis. He can
legally pass the ball to a teammate as long as the ball’s velocity rela-
tive to the field does not have a positive x component. Suppose the
player runs at speed 4.0 m/s relative to the field while he passes the
ball with velocity relative to himself. If has magnitude
6.0 m/s, what is the smallest angle it can have for the pass to be legal?

••73 Two highways intersect as shown in Fig. 4-46. At the instant
shown, a police car P is distance dP � 800 m from the intersection
and moving at speed vP � 80 km/h. Motorist M is distance dM �
600 m from the intersection and moving at speed vM � 60 km/h.

v:BPv:BP

x

y

M

dM

vP

vM

dP

P

Figure 4-46 Problem 73.

(a) In unit-vector notation, what is the velocity of the motorist
with respect to the police car? (b) For the instant shown in Fig. 4-46,
what is the angle between the velocity found in (a) and the line of
sight between the two cars? (c) If the cars maintain their veloci-
ties, do the answers to (a) and (b) change as the cars move nearer
the intersection?

breaks, and the stone flies off horizontally and strikes the ground
after traveling a horizontal distance of 10 m.What is the magnitude
of the centripetal acceleration of the stone during the circular 
motion?

•••68 A cat rides a merry-go-round turning with uniform
circular motion. At time t1 2.00 s, the cat’s velocity is 

, measured on a horizontal xy coordinate
system. At t2 5.00 s, the cat’s velocity is 

. What are (a) the magnitude of the cat’s centripetal
acceleration and (b) the cat’s average acceleration during the time
interval t2 � t1, which is less than one period?

(�4.00 m/s)ĵ
v:2 � (�3.00 m/s)î ��

(3.00 m/s)î � (4.00 m/s)ĵ
v:1 ��
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••74 After flying for 15 min in a wind blowing 42 km/h at an
angle of 20° south of east, an airplane pilot is over a town that is
55 km due north of the starting point. What is the speed of the air-
plane relative to the air?

••75 A train travels due south at 30 m/s (relative to the
ground) in a rain that is blown toward the south by the wind. The
path of each raindrop makes an angle of 70° with the vertical, as
measured by an observer stationary on the ground.An observer on
the train, however, sees the drops fall perfectly vertically.
Determine the speed of the raindrops relative to the ground.

••76 A light plane attains an airspeed of 500 km/h. The pilot sets
out for a destination 800 km due north but discovers that the plane
must be headed 20.0° east of due north to fly there directly. The
plane arrives in 2.00 h. What were the (a) magnitude and (b) direc-
tion of the wind velocity?

••77 Snow is falling vertically at a constant speed of 8.0 m/s.
At what angle from the vertical do the snowflakes appear to be
falling as viewed by the driver of a car traveling on a straight, level
road with a speed of 50 km/h?

••78 In the overhead view of
Fig. 4-47, Jeeps P and B race
along straight lines, across flat
terrain, and past stationary bor-
der guard A. Relative to the
guard, B travels at a constant
speed of 20.0 m/s, at the angle 
u2 � 30.0°. Relative to the guard,
P has accelerated from rest at a
constant rate of 0.400 m/s2 at the
angle u1 � 60.0°.At a certain time
during the acceleration, P has a speed of 40.0 m/s. At that time, what
are the (a) magnitude and (b) direction of the velocity of P relative to
B and the (c) magnitude and (d) direction of the acceleration of P
relative to B?

••79 Two ships, A and B, leave port at the same time.
Ship A travels northwest at 24 knots, and ship B travels at 28 knots
in a direction 40° west of south. (1 knot � 1 nautical mile per hour;
see Appendix D.) What are the (a) magnitude and (b) direction of
the velocity of ship A relative to B? (c) After what time will the
ships be 160 nautical miles apart? (d) What will be the bearing of B
(the direction of B’s position) relative to A at that time?

••80 A 200-m-wide river flows due east at a uniform speed of
2.0 m/s. A boat with a speed of 8.0 m/s relative to the water leaves
the south bank pointed in a direction 30° west of north. What are
the (a) magnitude and (b) direction of the boat’s velocity relative
to the ground? (c) How long does the boat take to cross the river?

•••81 Ship A is located 4.0 km north and 2.5 km east of ship
B. Ship A has a velocity of 22 km/h toward the south, and ship B
has a velocity of 40 km/h in a direction 37° north of east. (a)
What is the velocity of A relative to B in unit-vector notation
with toward the east? (b) Write an expression (in terms of and )
for the position of A relative to B as a function of t, where t 0
when the ships are in the positions described above. (c) At what
time is the separation between the ships least? (d) What is that
least separation?

•••82 A 200-m-wide river has a uniform flow speed of 1.1 m/s
through a jungle and toward the east. An explorer wishes to
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Figure 4-47 Problem 78.

leave a small clearing on the south bank and cross the river in a
powerboat that moves at a constant speed of 4.0 m/s with respect
to the water. There is a clearing on the north bank 82 m up-
stream from a point directly opposite the clearing on the south
bank. (a) In what direction must the boat be pointed in order to
travel in a straight line and land in the clearing on the north
bank? (b) How long will the boat take to cross the river and land
in the clearing?

Additional Problems
83 A woman who can row a boat at 6.4 km/h in still water faces a
long, straight river with a width of 6.4 km and a current of 3.2 km/h.
Let î point directly across the river and ĵ point directly down-
stream. If she rows in a straight line to a point directly opposite her
starting position, (a) at what angle to î must she point the boat and
(b) how long will she take? (c) How long will she take if, instead,
she rows 3.2 km down the river and then back to her starting
point? (d) How long if she rows 3.2 km up the river and then back
to her starting point? (e) At what angle to iî should she point the
boat if she wants to cross the river in the shortest possible time? (f)
How long is that shortest time?

84 In Fig. 4-48a, a sled moves in the negative x direction at con-
stant speed vs while a ball of ice is shot from the sled with a velocity

relative to the sled. When the ball lands, its hori-
zontal displacement �xbg relative to the ground (from its launch
position to its landing position) is measured. Figure 4-48b gives
�xbg as a function of vs. Assume the ball lands at approximately
its launch height. What are the values of (a) v0x and (b) v0y? The
ball’s displacement �xbs relative to the sled can also be measured.
Assume that the sled’s velocity is not changed when the ball is
shot.What is �xbs when vs is (c) 5.0 m/s and (d) 15 m/s?

v:0 � v0xî � v0yĵ

Figure 4-48 Problem 84.
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85 You are kidnapped by political-science majors (who are
upset because you told them political science is not a real
science). Although blindfolded, you can tell the speed of their
car (by the whine of the engine), the time of travel (by mentally
counting off seconds), and the direction of travel (by turns
along the rectangular street system). From these clues, you
know that you are taken along the following course: 50 km/h for
2.0 min, turn 90° to the right, 20 km/h for 4.0 min, turn 90° to the
right, 20 km/h for 60 s, turn 90° to the left, 50 km/h for 60 s, turn
90° to the right, 20 km/h for 2.0 min, turn 90° to the left, 50 km/h
for 30 s. At that point, (a) how far are you from your starting
point, and (b) in what direction relative to your initial direction
of travel are you?



87 A baseball is hit at ground level. The ball reaches its
maximum height above ground level 3.0 s after being hit. Then
2.5 s after reaching its maximum height, the ball barely clears a
fence that is 97.5 m from where it was hit. Assume the ground is
level. (a) What maximum height above ground level is reached by
the ball? (b) How high is the fence? (c) How far beyond the fence
does the ball strike the ground?

88 Long flights at midlatitudes in the Northern Hemisphere en-
counter the jet stream, an eastward airflow that can affect a plane’s
speed relative to Earth’s surface. If a pilot maintains a certain speed
relative to the air (the plane’s airspeed), the speed relative to the sur-
face (the plane’s ground speed) is more when the flight is in the di-
rection of the jet stream and less when the flight is opposite the jet
stream. Suppose a round-trip flight is scheduled between two cities
separated by 4000 km, with the outgoing flight in the direction of the
jet stream and the return flight opposite it. The airline computer ad-
vises an airspeed of 1000 km/h, for which the difference in flight
times for the outgoing and return flights is 70.0 min.What jet-stream
speed is the computer using?

89 A particle starts from the origin at t � 0 with a velocity
of 8.0 m/s and moves in the xy plane with constant acceleration
(4.0 2.0 ) m/s2. When the particle’s x coordinate is 29 m, what
are its (a) y coordinate and (b) speed?

90 At what initial speed
must the basketball player in
Fig. 4-50 throw the ball, at an-
gle u0 � 55° above the hori-
zontal, to make the foul shot?
The horizontal distances are
d1 � 1.0 ft and d2 � 14 ft, and
the heights are h1 � 7.0 ft
and h2 � 10 ft.

91 During volcanic erup-
tions, chunks of solid rock
can be blasted out of the vol-
cano; these projectiles are
called volcanic bombs. Figure 4-51 shows a cross section of Mt.
Fuji, in Japan. (a) At what initial speed would a bomb have to be
ejected, at angle u0 � 35° to the horizontal, from the vent at A in
order to fall at the foot of the volcano at B, at vertical distance 
h � 3.30 km and horizontal distance d � 9.40 km? Ignore, for the
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86 A radar station detects an airplane approaching directly from
the east. At first observation, the airplane is at distance d1 � 360 m
from the station and at angle u1 � 40° above the horizon (Fig. 4-49).
The airplane is tracked through an angular change �u � 123° in the
vertical east–west plane; its distance is then d2 � 790 m. Find the
(a) magnitude and (b) direction of the airplane’s displacement dur-
ing this period.
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θ 

Figure 4-50 Problem 90.

moment, the effects of air on the bomb’s travel. (b) What would
be the time of flight? (c) Would the effect of the air increase or
decrease your answer in (a)?

Figure 4-51 Problem 91.
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Figure 4-52 Problem 94.

92 An astronaut is rotated in a horizontal centrifuge at a radius
of 5.0 m. (a) What is the astronaut’s speed if the centripetal accel-
eration has a magnitude of 7.0g? (b) How many revolutions per
minute are required to produce this acceleration? (c) What is the
period of the motion?

93 Oasis A is 90 km due west of oasis B. A desert camel
leaves A and takes 50 h to walk 75 km at 37° north of due east.
Next it takes 35 h to walk 65 km due south. Then it rests for 5.0 h.
What are the (a) magnitude and (b) direction of the camel’s dis-
placement relative to A at the resting point? From the time the
camel leaves A until the end of the rest period, what are the (c)
magnitude and (d) direction of its average velocity and (e) its aver-
age speed? The camel’s last drink was at A; it must be at B no more
than 120 h later for its next drink. If it is to reach B just in time, what
must be the (f) magnitude and (g) direction of its average velocity
after the rest period?

94 Curtain of death. A large metallic asteroid strikes Earth
and quickly digs a crater into the rocky material below ground level
by launching rocks upward and outward. The following table gives
five pairs of launch speeds and angles (from the horizontal) for such
rocks, based on a model of crater formation. (Other rocks, with inter-
mediate speeds and angles, are also launched.) Suppose that you are
at x � 20 km when the asteroid strikes the ground at time t � 0 and
position x � 0 (Fig. 4-52). (a) At t � 20 s, what are the x and y
coordinates of the rocks headed in your direction from launches A
through E? (b) Plot these coordinates and then sketch a curve
through the points to include rocks with intermediate launch speeds
and angles.The curve should indicate what you would see as you look
up into the approaching rocks.

Launch Speed (m/s) Angle (degrees)

A 520 14.0
B 630 16.0
C 750 18.0
D 870 20.0
E 1000 22.0
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Figure 4-49 Problem 86.
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95 Figure 4-53 shows the straight path of a particle
across an xy coordinate system as the particle is ac-
celerated from rest during time interval �t1. The ac-
celeration is constant. The xy coordinates for point
A are (4.00 m, 6.00 m); those for point B are (12.0
m, 18.0 m). (a) What is the ratio ay/ax of the acceler-
ation components? (b) What are the coordinates of
the particle if the motion is continued for another
interval equal to �t1?

96 For women’s volleyball the top of the net is 2.24 m above the
floor and the court measures 9.0 m by 9.0 m on each side of the
net. Using a jump serve, a player strikes the ball at a point that is
3.0 m above the floor and a horizontal distance of 8.0 m from the
net. If the initial velocity of the ball is horizontal, (a) what mini-
mum magnitude must it have if the ball is to clear the net and (b)
what maximum magnitude can it have if the ball is to strike the
floor inside the back line on the other side of the net?

97 A rifle is aimed horizontally at a target 30 m away. The
bullet hits the target 1.9 cm below the aiming point.What are (a) the
bullet’s time of flight and (b) its speed as it emerges from the rifle?

98 A particle is in uniform circular motion about the origin of an
xy coordinate system, moving clockwise with a period of 7.00 s. At
one instant, its position vector (measured from the origin) is

. At that instant, what is its velocity in
unit-vector notation?

99 In Fig. 4-54, a lump of wet
putty moves in uniform circular mo-
tion as it rides at a radius of 20.0 cm
on the rim of a wheel rotating coun-
terclockwise with a period of 5.00
ms. The lump then happens to fly off
the rim at the 5 o’clock position (as
if on a clock face). It leaves the rim
at a height of h � 1.20 m from the floor and at a distance d � 2.50
m from a wall.At what height on the wall does the lump hit?

100 An iceboat sails across the surface of a frozen lake with con-
stant acceleration produced by the wind. At a certain instant the
boat’s velocity is (6.30 � 8.42 ) m/s. Three seconds later, because
of a wind shift, the boat is instantaneously at rest. What is its aver-
age acceleration for this 3.00 s interval?

101 In Fig. 4-55, a ball is shot di-
rectly upward from the ground with
an initial speed of v0 � 7.00 m/s.
Simultaneously, a construction eleva-
tor cab begins to move upward from
the ground with a constant speed of
vc � 3.00 m/s. What maximum height
does the ball reach relative to (a) the
ground and (b) the cab floor? At what rate does the speed of the ball
change relative to (c) the ground and (d) the cab floor?

102 A magnetic field forces an electron to move in a circle with
radial acceleration 3.0 � 1014 m/s2. (a) What is the speed of the elec-
tron if the radius of its circular path is 15 cm? (b) What is the period
of the motion?

103 In 3.50 h, a balloon drifts 21.5 km north, 9.70 km east, and
2.88 km upward from its release point on the ground. Find (a) the
magnitude of its average velocity and (b) the angle its average ve-
locity makes with the horizontal.
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104 A ball is thrown horizontally from a height of 20 m and hits
the ground with a speed that is three times its initial speed. What is
the initial speed?

105 A projectile is launched with an initial speed of 30 m/s at an
angle of 60° above the horizontal. What are the (a) magnitude and
(b) angle of its velocity 2.0 s after launch, and (c) is the angle above
or below the horizontal? What are the (d) magnitude and (e) angle
of its velocity 5.0 s after launch, and (f) is the angle above or below
the horizontal?

106 The position vector for a proton is initially 
and then later is , all

in meters. (a) What is the proton’s displacement vector, and (b) to
what plane is that vector parallel?

107 A particle P travels with con-
stant speed on a circle of radius r �
3.00 m (Fig. 4-56) and completes one
revolution in 20.0 s. The particle
passes through O at time t � 0. State
the following vectors in magnitude-
angle notation (angle relative to the
positive direction of x). With respect
to O, find the particle’s position vec-
tor at the times t of (a) 5.00 s, (b)
7.50 s, and (c) 10.0 s. (d) For the
5.00 s interval from the end of
the fifth second to the end of the
tenth second, find the particle’s displacement. For that interval,
find (e) its average velocity and its velocity at the (f) beginning and
(g) end. Next, find the acceleration at the (h) beginning and (i) end
of that interval.

108 The fast French train known as the TGV (Train à Grande
Vitesse) has a scheduled average speed of 216 km/h. (a) If the train
goes around a curve at that speed and the magnitude of the accel-
eration experienced by the passengers is to be limited to 0.050g,
what is the smallest radius of curvature for the track that can be
tolerated? (b) At what speed must the train go around a curve with
a 1.00 km radius to be at the acceleration limit?

109 (a) If an electron is projected horizontally with a speed of
3.0 � 106 m/s, how far will it fall in traversing 1.0 m of horizontal
distance? (b) Does the answer increase or decrease if the initial
speed is increased?

110 A person walks up a stalled 15-m-long escalator in 90 s.
When standing on the same escalator, now moving, the person is
carried up in 60 s. How much time would it take that person to
walk up the moving escalator? Does the answer depend on the
length of the escalator?

111 (a) What is the magnitude of the centripetal acceleration of
an object on Earth’s equator due to the rotation of Earth? (b)
What would Earth’s rotation period have to be for objects on the
equator to have a centripetal acceleration of magnitude 9.8 m/s2?

112 The range of a projectile depends not only on v0 and
but also on the value g of the free-fall acceleration, which varies
from place to place. In 1936, Jesse Owens established a world’s
running broad jump record of 8.09 m at the Olympic Games at
Berlin (where g 9.8128 m/s2). Assuming the same values of v0

and , by how much would his record have differed if he had com-
peted instead in 1956 at Melbourne (where g 9.7999 m/s2)?�
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113 Figure 4-57 shows the path
taken by a drunk skunk over level
ground, from initial point i to final
point f. The angles are 30.0°,

50.0°, and 80.0°, and the
distances are d1 5.00 m, d2 8.00
m, and d3 12.0 m.What are the (a)
magnitude and (b) angle of the
skunk’s displacement from i to f?

114 The position vector of a
particle moving in the xy plane is

, with
in meters and t in seconds. (a)

Calculate the x and y components
of the particle’s position at t 0, 1.0, 2.0, 3.0, and 4.0 s and
sketch the particle’s path in the xy plane for the interval 0 � t �
4.0 s. (b) Calculate the components of the particle’s velocity at
t 1.0, 2.0, and 3.0 s. Show that the velocity is tangent to the
path of the particle and in the direction the particle is moving at
each time by drawing the velocity vectors on the plot of the parti-
cle’s path in part (a). (c) Calculate the components of the parti-
cle’s acceleration at t � 1.0, 2.0, and 3.0 s.

115 An electron having an initial horizontal velocity of magnitude
1.00 � 109 cm/s travels into the region between two horizontal metal
plates that are electrically charged. In that region, the electron trav-
els a horizontal distance of 2.00 cm and has a constant downward ac-
celeration of magnitude 1.00 � 1017 cm/s2 due to the charged plates.
Find (a) the time the electron takes to travel the 2.00 cm, (b) the ver-
tical distance it travels during that time, and the magnitudes of its (c)
horizontal and (d) vertical velocity components as it emerges from
the region.

116 An elevator without a ceiling is ascending with a constant
speed of 10 m/s. A boy on the elevator shoots a ball directly up-
ward, from a height of 2.0 m above the elevator floor, just as the el-
evator floor is 28 m above the ground. The initial speed of the ball
with respect to the elevator is 20 m/s. (a) What maximum height
above the ground does the ball reach? (b) How long does the ball
take to return to the elevator floor?

117 A football player punts the football so that it will have a
“hang time” (time of flight) of 4.5 s and land 46 m away. If the ball
leaves the player’s foot 150 cm above the ground, what must be the
(a) magnitude and (b) angle (relative to the horizontal) of the
ball’s initial velocity?

118 An airport terminal has a moving sidewalk to speed passen-
gers through a long corridor. Larry does not use the moving side-
walk; he takes 150 s to walk through the corridor. Curly, who sim-
ply stands on the moving sidewalk, covers the same distance in 70 s.
Moe boards the sidewalk and walks along it. How long does Moe
take to move through the corridor? Assume that Larry and Moe
walk at the same speed.

119 A wooden boxcar is moving along a straight railroad track
at speed v1. A sniper fires a bullet (initial speed v2) at it from a
high-powered rifle. The bullet passes through both lengthwise
walls of the car, its entrance and exit holes being exactly opposite
each other as viewed from within the car. From what direction, rel-
ative to the track, is the bullet fired? Assume that the bullet is not
deflected upon entering the car, but that its speed decreases by
20%. Take v1 85 km/h and v2 650 m/s. (Why don’t you need to
know the width of the boxcar?)
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120 A sprinter running on a circular track has a velocity of con-
stant magnitude 9.20 m/s and a centripetal acceleration of magni-
tude 3.80 m/s2. What are (a) the track radius and (b) the period of
the circular motion?

121 Suppose that a space probe can withstand the stresses of a
20g acceleration. (a) What is the minimum turning radius of such a
craft moving at a speed of one-tenth the speed of light? (b) How
long would it take to complete a 90° turn at this speed?

122 You are to throw a ball with
a speed of 12.0 m/s at a target that is
height h = 5.00 m above the level at
which you release the ball (Fig. 4-58).
You want the ball’s velocity to be
horizontal at the instant it reaches
the target. (a) At what angle above
the horizontal must you throw the
ball? (b) What is the horizontal dis-
tance from the release point to the
target? (c) What is the speed of the
ball just as it reaches the target?

123 A projectile is fired with an
initial speed v0 = 30.0 m/s from level
ground at a target that is on the
ground, at distance R = 20.0 m, as
shown in Fig. 4-59. What are the (a)
least and (b) greatest launch angles
that will allow the projectile to hit the
target?

124 A graphing surprise.At time t = 0, a burrito is launched from
level ground, with an initial speed of 16.0 m/s and launch angle .
Imagine a position vector continuously directed from the
launching point to the burrito during the flight. Graph the magni-
tude r of the position vector for (a) = 40.0° and (b) = 80.0°. For

= 40.0°, (c) when does r reach its maximum value, (d) what is
that value, and how far (e) horizontally and (f) vertically is the bur-
rito from the launch point? For = 80.0°, (g) when does r reach its
maximum value, (h) what is that value, and how far (i) horizontally
and (j) vertically is the burrito from the launch point?

125 A cannon located at sea level fires a ball with initial speed
82 m/s and initial angle 45°. The ball lands in the water after travel-
ing a horizontal distance 686 m. How much greater would the hori-
zontal distance have been had the cannon been 30 m higher?

126 The magnitude of the velocity of a projectile when it is at its
maximum height above ground level is 10.0 m/s. (a) What is the
magnitude of the velocity of the projectile 1.00 s before it achieves
its maximum height? (b) What is the magnitude of the velocity of
the projectile 1.00 s after it achieves its maximum height? If we
take x = 0 and y = 0 to be at the point of maximum height and posi-
tive x to be in the direction of the velocity there, what are the (c) x
coordinate and (d) y coordinate of the projectile 1.00 s before it
reaches its maximum height and the (e) x coordinate and (f) y co-
ordinate 1.0 s after it reaches its maximum height?

127 A frightened rabbit moving at 6.00 m/s due east runs onto a
large area of level ice of negligible friction. As the rabbit slides
across the ice, the force of the wind causes it to have a constant ac-
celeration of 1.40 m/s2, due north. Choose a coordinate system with
the origin at the rabbit’s initial position on the ice and the positive
x axis directed toward the east. In unit-vector notation, what are
the rabbit’s (a) velocity and (b) position when it has slid for 3.00 s? 
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130 Some state trooper departments use aircraft to enforce
highway speed limits. Suppose that one of the airplanes has a speed
of 135 mi/h in still air. It is flying straight north so that it is at all
times directly above a north–south highway. A ground observer
tells the pilot by radio that a 70.0 mi/h wind is blowing but neglects
to give the wind direction. The pilot observes that in spite of the
wind the plane can travel 135 mi along the highway in 1.00 h. In
other words, the ground speed is the same as if there were no wind.
(a) From what direction is the wind blowing? (b) What is the head-
ing of the plane; that is, in what direction does it point?

131 A golfer tees off from the top of a rise, giving the golf ball an
initial velocity of 43.0 m/s at an angle of 30.0° above the horizontal.
The ball strikes the fairway a horizontal distance of 180 m from the
tee. Assume the fairway is level. (a) How high is the rise above the
fairway? (b) What is the speed of the ball as it strikes the fairway?

132 A track meet is held on a planet in a distant solar system. A
shot-putter releases a shot at a point 2.0 m above ground level. A
stroboscopic plot of the position of the shot is shown in Fig. 4-61,

where the readings are 0.50 s apart and the shot is released at
time t = 0. (a) What is the initial velocity of the shot in unit-vector
notation? (b) What is the magnitude of the free-fall acceleration
on the planet? (c) How long after it is released does the shot
reach the ground? (d) If an identical throw of the shot is made on
the surface of Earth, how long after it is released does it reach the
ground?

133 A helicopter is flying in a straight line over a level field at
a constant speed of 6.20 m/s and at a constant altitude of 9.50 m.
A package is ejected horizontally from the helicopter with an
initial velocity of 12.0 m/s relative to the helicopter and in a di-
rection opposite the helicopter’s motion. (a) Find the initial
speed of the package relative to the ground. (b) What is the hori-
zontal distance between the helicopter and the package at the
instant the package strikes the ground? (c) What angle does the
velocity vector of the package make with the ground at the in-
stant before impact, as seen from the ground?

134 A car travels around a flat circle on the ground, at a constant
speed of 12.0 m/s.At a certain instant the car has an acceleration of
3.00 m/s2 toward the east. What are its distance and direction from
the center of the circle at that instant if it is traveling (a) clockwise
around the circle and (b) counterclockwise around the circle?

135 You throw a ball from a cliff with an initial velocity of
15.0 m/s at an angle of 20.0° below the horizontal. Find (a) its hori-
zontal displacement and (b) its vertical displacement 2.30 s later.

136 A baseball is hit at Fenway Park in Boston at a point
0.762 m above home plate with an initial velocity of 33.53 m/s di-
rected 55.0° above the horizontal. The ball is observed to clear
the 11.28-m-high wall in left field (known as the “green mon-
ster”) 5.00 s after it is hit, at a point just inside the left-field foul-
line pole. Find (a) the horizontal distance down the left-field foul
line from home plate to the wall; (b) the vertical distance by
which the ball clears the wall; (c) the horizontal and vertical dis-
placements of the ball with respect to home plate 0.500 s before
it clears the wall.

137 A transcontinental flight of 4350 km is scheduled to take
50 min longer westward than eastward. The airspeed of the air-
plane is 966 km/h, and the jet stream it will fly through is pre-
sumed to move due east. What is the assumed speed of the jet
stream?

138 A woman can row a boat at 6.40 km/h in still water. (a) If
she is crossing a river where the current is 3.20 km/h, in what di-
rection must her boat be headed if she wants to reach a point di-
rectly opposite her starting point? (b) If the river is 6.40 km
wide, how long will she take to cross the river? (c) Suppose that
instead of crossing the river she rows 3.20 km down the river and
then back to her starting point. How long will she take? (d) How
long will she take to row 3.20 km up the river and then back to
her starting point? (e) In what direction should she head the
boat if she wants to cross in the shortest possible time, and what
is that time?
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128 The pilot of an aircraft flies due east relative to the ground
in a wind blowing 20.0 km/h toward the south. If the speed of the
aircraft in the absence of wind is 70.0 km/h, what is the speed of the
aircraft relative to the ground? 

129 The pitcher in a slow-pitch softball game releases the ball at a
point 3.0 ft above ground level.A stroboscopic plot of the position of
the ball is shown in Fig. 4-60, where the readings are 0.25 s apart and
the ball is released at t = 0. (a) What is the initial speed of the ball?
(b) What is the speed of the ball at the instant it reaches its maxi-
mum height above ground level? (c) What is that maximum height?
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What Is Physics?
We have seen that part of physics is a study of motion, including accelerations,
which are changes in velocities. Physics is also a study of what can cause an object
to accelerate.That cause is a force, which is, loosely speaking, a push or pull on the
object. The force is said to act on the object to change its velocity. For example,
when a dragster accelerates, a force from the track acts on the rear tires to cause
the dragster’s acceleration.When a defensive guard knocks down a quarterback, a
force from the guard acts on the quarterback to cause the quarterback’s backward
acceleration. When a car slams into a telephone pole, a force on the car from the

C H A P T E R  5

Force and Motion—I

5-1 NEWTON’S FIRST AND SECOND LAWS

After reading this module, you should be able to . . .

5.01 Identify that a force is a vector quantity and thus has
both magnitude and direction and also components.

5.02 Given two or more forces acting on the same particle,
add the forces as vectors to get the net force.

5.03 Identify Newton’s first and second laws of motion.
5.04 Identify inertial reference frames.
5.05 Sketch a free-body diagram for an object, showing the

object as a particle and drawing the forces acting on it as
vectors with their tails anchored on the particle.

5.06 Apply the relationship (Newton’s second law) between
the net force on an object, the mass of the object, and the
acceleration produced by the net force.

5.07 Identify that only external forces on an object can cause
the object to accelerate.

● The velocity of an object can change (the object can accel-
erate) when the object is acted on by one or more forces
(pushes or pulls) from other objects. Newtonian mechanics
relates accelerations and forces.

● Forces are vector quantities. Their magnitudes are defined
in terms of the acceleration they would give the standard kilo-
gram. A force that accelerates that standard body by exactly
1 m/s2 is defined to have a magnitude of 1 N. The direction of
a force is the direction of the acceleration it causes. Forces
are combined according to the rules of vector algebra. The
net force on a body is the vector sum of all the forces acting
on the body.

● If there is no net force on a body, the body remains at rest if
it is initially at rest or moves in a straight line at constant
speed if it is in motion.

● Reference frames in which Newtonian mechanics holds are
called inertial reference frames or inertial frames. Reference
frames in which Newtonian mechanics does not hold are
called noninertial reference frames or noninertial frames.

● The mass of a body is the characteristic of that body that 
relates the body’s acceleration to the net force causing the
acceleration. Masses are scalar quantities.

● The net force on a body with mass m is related to the
body’s acceleration by

which may be written in the component versions

.

The second law indicates that in SI units

1 N � 1 kg�m/s2.

● A free-body diagram is a stripped-down diagram in which
only one body is considered. That body is represented by 
either a sketch or a dot. The external forces on the body are
drawn, and a coordinate system is superimposed, oriented
so as to simplify the solution.

Fnet,x � max Fnet,y � may and Fnet,z � maz

Fnet
:

� ma:,

a:
Fnet
:

Key Ideas

Learning Objectives
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pole causes the car to stop. Science, engineering, legal, and medical journals are
filled with articles about forces on objects, including people.

A Heads Up. Many students find this chapter to be more challenging than the
preceding ones. One reason is that we need to use vectors in setting up equations—
we cannot just sum some scalars. So, we need the vector rules from Chapter 3.
Another reason is that we shall see a lot of different arrangements: objects will
move along floors, ceilings, walls, and ramps. They will move upward on ropes
looped around pulleys or by sitting in ascending or descending elevators.
Sometimes, objects will even be tied together.

However, in spite of the variety of arrangements, we need only a single key
idea (Newton’s second law) to solve most of the homework problems. The pur-
pose of this chapter is for us to explore how we can apply that single key idea to
any given arrangement. The application will take experience—we need to solve
lots of problems, not just read words. So, let’s go through some of the words and
then get to the sample problems.

Newtonian Mechanics
The relation between a force and the acceleration it causes was first understood
by Isaac Newton (1642–1727) and is the subject of this chapter. The study of that
relation, as Newton presented it, is called Newtonian mechanics. We shall focus
on its three primary laws of motion.

Newtonian mechanics does not apply to all situations. If the speeds of the in-
teracting bodies are very large—an appreciable fraction of the speed of light—we
must replace Newtonian mechanics with Einstein’s special theory of relativity,
which holds at any speed, including those near the speed of light. If the interacting
bodies are on the scale of atomic structure (for example, they might be electrons
in an atom), we must replace Newtonian mechanics with quantum mechanics.
Physicists now view Newtonian mechanics as a special case of these two more
comprehensive theories. Still, it is a very important special case because it applies
to the motion of objects ranging in size from the very small (almost on the scale of
atomic structure) to astronomical (galaxies and clusters of galaxies).

Newton’s First Law
Before Newton formulated his mechanics, it was thought that some influence,
a “force,” was needed to keep a body moving at constant velocity. Similarly, a
body was thought to be in its “natural state” when it was at rest. For a body to
move with constant velocity, it seemingly had to be propelled in some way, by
a push or a pull. Otherwise, it would “naturally” stop moving.

These ideas were reasonable. If you send a puck sliding across a wooden
floor, it does indeed slow and then stop. If you want to make it move across the
floor with constant velocity, you have to continuously pull or push it.

Send a puck sliding over the ice of a skating rink, however, and it goes a lot
farther. You can imagine longer and more slippery surfaces, over which the puck
would slide farther and farther. In the limit you can think of a long, extremely
slippery surface (said to be a frictionless surface), over which the puck would
hardly slow. (We can in fact come close to this situation by sending a puck sliding
over a horizontal air table, across which it moves on a film of air.)

From these observations, we can conclude that a body will keep moving with
constant velocity if no force acts on it. That leads us to the first of Newton’s three
laws of motion:

Newton’s First Law: If no force acts on a body, the body’s velocity cannot
change; that is, the body cannot accelerate.
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In other words, if the body is at rest, it stays at rest. If it is moving, it continues to
move with the same velocity (same magnitude and same direction).

Force
Before we begin working problems with forces, we need to discuss several fea-
tures of forces, such as the force unit, the vector nature of forces, the combining of
forces, and the circumstances in which we can measure forces (without being
fooled by a fictitious force).

Unit. We can define the unit of force in terms of the acceleration a force
would give to the standard kilogram (Fig. 1-3), which has a mass defined to be ex-
actly 1 kg. Suppose we put that body on a horizontal, frictionless surface and pull
horizontally (Fig. 5-1) such that the body has an acceleration of 1 m/s2. Then we
can define our applied force as having a magnitude of 1 newton (abbreviated N).
If we then pulled with a force magnitude of 2 N, we would find that the accelera-
tion is 2 m/s2. Thus, the acceleration is proportional to the force. If the standard
body of 1 kg has an acceleration of magnitude a (in meters per second per sec-
ond), then the force (in newtons) producing the acceleration has a magnitude
equal to a.We now have a workable definition of the force unit.

Vectors. Force is a vector quantity and thus has not only magnitude but also
direction. So, if two or more forces act on a body, we find the net force (or result-
ant force) by adding them as vectors, following the rules of Chapter 3. A single
force that has the same magnitude and direction as the calculated net force
would then have the same effect as all the individual forces. This fact, called the
principle of superposition for forces, makes everyday forces reasonable and pre-
dictable. The world would indeed be strange and unpredictable if, say, you and a
friend each pulled on the standard body with a force of 1 N and somehow the net
pull was 14 N and the resulting acceleration was 14 m/s2.

In this book, forces are most often represented with a vector symbol such as
and a net force is represented with the vector symbol .As with other vectors,

a force or a net force can have components along coordinate axes.When forces act
only along a single axis, they are single-component forces. Then we can drop the
overhead arrows on the force symbols and just use signs to indicate the directions
of the forces along that axis.

The First Law. Instead of our previous wording, the more proper statement
of Newton’s First Law is in terms of a net force:

F
:

netF
:
,

Figure 5-1 A force on the standard
kilogram gives that body an acceleration a:.

F
:

a

F

Newton’s First Law: If no net force acts on a body , the body’s velocity
cannot change; that is, the body cannot accelerate.

(F
:

net � 0)

There may be multiple forces acting on a body, but if their net force is zero, the
body cannot accelerate. So, if we happen to know that a body’s velocity is con-
stant, we can immediately say that the net force on it is zero.

Inertial Reference Frames
Newton’s first law is not true in all reference frames, but we can always find
reference frames in which it (as well as the rest of Newtonian mechanics) is true.
Such special frames are referred to as inertial reference frames, or simply inertial
frames.

For example, we can assume that the ground is an inertial frame provided we can
neglect Earth’s astronomical motions (such as its rotation).
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That assumption works well if, say, a puck is sent sliding along a short strip
of frictionless ice — we would find that the puck’s motion obeys Newton’s laws.
However, suppose the puck is sent sliding along a long ice strip extending from
the north pole (Fig. 5-2a). If we view the puck from a stationary frame in space,
the puck moves south along a simple straight line because Earth’s rotation
around the north pole merely slides the ice beneath the puck. However, if we
view the puck from a point on the ground so that we rotate with Earth, the
puck’s path is not a simple straight line. Because the eastward speed of the
ground beneath the puck is greater the farther south the puck slides, from our
ground-based view the puck appears to be deflected westward (Fig. 5-2b).
However, this apparent deflection is caused not by a force as required by
Newton’s laws but by the fact that we see the puck from a rotating frame. In this
situation, the ground is a noninertial frame, and trying to explain the deflection
in terms of a force would lead us to a fictitious force. A more common example
of inventing such a nonexistent force can occur in a car that is rapidly increas-
ing in speed. You might claim that a force to the rear shoves you hard into the
seat back.

In this book we usually assume that the ground is an inertial frame and that
measured forces and accelerations are from this frame. If measurements are made
in, say, a vehicle that is accelerating relative to the ground, then the measurements
are being made in a noninertial frame and the results can be surprising.

Figure 5-2 (a) The path of a puck sliding
from the north pole as seen from a station-
ary point in space. Earth rotates to the east.
(b) The path of the puck as seen from the
ground.

N

S

EW

(a)

(b)

Earth's rotation
causes an
apparent deflection.

Checkpoint 1
Which of the figure’s six arrangements correctly show the vector addition of forces 
and to yield the third vector, which is meant to represent their net force ?F

:

netF
:

2

F
:

1

(a) (c)(b)

F1 F1 F1

F1 F1 F1

F2F2F2

F2

F2 F2
(d) ( f )(e)

Mass
From everyday experience you already know that applying a given force to bod-
ies (say, a baseball and a bowling ball) results in different accelerations. The com-
mon explanation is correct: The object with the larger mass is accelerated less.
But we can be more precise. The acceleration is actually inversely related to the
mass (rather than, say, the square of the mass).

Let’s justify that inverse relationship. Suppose, as previously, we push on the
standard body (defined to have a mass of exactly 1 kg) with a force of magnitude
1 N. The body accelerates with a magnitude of 1 m/s2. Next we push on body X
with the same force and find that it accelerates at 0.25 m/s2. Let’s make the (cor-
rect) assumption that with the same force,

mX

m0
�

a0

aX
,
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and thus

Defining the mass of X in this way is useful only if the procedure is consis-
tent. Suppose we apply an 8.0 N force first to the standard body (getting an accel-
eration of 8.0 m/s2) and then to body X (getting an acceleration of 2.0 m/s2). We
would then calculate the mass of X as

which means that our procedure is consistent and thus usable.
The results also suggest that mass is an intrinsic characteristic of a body—it

automatically comes with the existence of the body. Also, it is a scalar quantity.
However, the nagging question remains:What, exactly, is mass?

Since the word mass is used in everyday English, we should have some intu-
itive understanding of it, maybe something that we can physically sense. Is it
a body’s size, weight, or density? The answer is no, although those characteristics
are sometimes confused with mass. We can say only that the mass of a body is
the characteristic that relates a force on the body to the resulting acceleration. Mass
has no more familiar definition; you can have a physical sensation of mass only
when you try to accelerate a body, as in the kicking of a baseball or a bowling ball.

Newton’s Second Law
All the definitions, experiments, and observations we have discussed so far can be
summarized in one neat statement:

mX � m0
a0

aX
� (1.0 kg)

8.0 m/s2

2.0 m/s2 � 4.0 kg,

mX � m0
a0

aX
� (1.0 kg) 

1.0 m/s2

0.25 m/s2 � 4.0 kg.

Newton’s Second Law: The net force on a body is equal to the product of the
body’s mass and its acceleration.

In equation form,

(Newton’s second law). (5-1)

Identify the Body. This simple equation is the key idea for nearly all the
homework problems in this chapter, but we must use it cautiously. First, we must
be certain about which body we are applying it to. Then must be the vector
sum of all the forces that act on that body. Only forces that act on that body are to
be included in the vector sum, not forces acting on other bodies that might be
involved in the given situation. For example, if you are in a rugby scrum, the net
force on you is the vector sum of all the pushes and pulls on your body. It does
not include any push or pull on another player from you or from anyone else.
Every time you work a force problem, your first step is to clearly state the body
to which you are applying Newton’s law.

Separate Axes. Like other vector equations, Eq. 5-1 is equivalent to three
component equations, one for each axis of an xyz coordinate system:

Fnet, x � max, Fnet, y � may, and Fnet, z � maz. (5-2)

Each of these equations relates the net force component along an axis to the
acceleration along that same axis. For example, the first equation tells us that
the sum of all the force components along the x axis causes the x component ax

of the body’s acceleration, but causes no acceleration in the y and z directions.
Turned around, the acceleration component ax is caused only by the sum of the

F
:

net

F
:

net � ma:
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force components along the x axis and is completely unrelated to force compo-
nents along another axis. In general,

The acceleration component along a given axis is caused only by the sum of the force
components along that same axis, and not by force components along any other axis.

Table 5-1 Units in Newton’s Second Law (Eqs. 5-1 and 5-2)

System Force Mass Acceleration

SI newton (N) kilogram (kg) m/s2

CGSa dyne gram (g) cm/s2

Britishb pound (lb) slug ft/s2

a1 dyne � 1 g �cm/s2.
b1 lb � 1 slug �ft/s2.

Checkpoint 2
The figure here shows two horizontal forces acting
on a block on a frictionless floor. If a third horizon-
tal force also acts on the block, what are the magnitude and direction of when
the block is (a) stationary and (b) moving to the left with a constant speed of 5 m/s?

F
:

3F
:

3

3 N 5 N 

Forces in Equilibrium. Equation 5-1 tells us that if the net force on a body is
zero, the body’s acceleration . If the body is at rest, it stays at rest; if it is
moving, it continues to move at constant velocity. In such cases, any forces on the
body balance one another, and both the forces and the body are said to be in
equilibrium. Commonly, the forces are also said to cancel one another, but the
term “cancel” is tricky. It does not mean that the forces cease to exist (canceling
forces is not like canceling dinner reservations). The forces still act on the body
but cannot change the velocity.

Units. For SI units, Eq. 5-1 tells us that

1 N � (1 kg)(1 m/s2) � 1 kg �m/s2. (5-3)

Some force units in other systems of units are given in Table 5-1 and Appendix D.
Diagrams. To solve problems with Newton’s second law, we often draw a

free-body diagram in which the only body shown is the one for which we are sum-
ming forces. A sketch of the body itself is preferred by some teachers but, to save
space in these chapters, we shall usually represent the body with a dot. Also, each
force on the body is drawn as a vector arrow with its tail anchored on the body.A
coordinate system is usually included, and the acceleration of the body is some-
times shown with a vector arrow (labeled as an acceleration). This whole proce-
dure is designed to focus our attention on the body of interest.

a: � 0

External Forces Only. A system consists of one or more bodies, and any
force on the bodies inside the system from bodies outside the system is called an
external force. If the bodies making up a system are rigidly connected to one an-
other, we can treat the system as one composite body, and the net force on it
is the vector sum of all external forces. (We do not include internal forces—that
is, forces between two bodies inside the system. Internal forces cannot accelerate
the system.) For example, a connected railroad engine and car form a system. If,
say, a tow line pulls on the front of the engine, the force due to the tow line acts on
the whole engine–car system. Just as for a single body, we can relate the net ex-
ternal force on a system to its acceleration with Newton’s second law, ,
where m is the total mass of the system.

F
:

net � ma:

F
:

net
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Sample Problem 5.01 One- and two-dimensional forces, puck

Here are examples of how to use Newton’s second law for a
puck when one or two forces act on it. Parts A, B, and C of
Fig. 5-3 show three situations in which one or two forces act
on a puck that moves over frictionless ice along an x axis, in
one-dimensional motion. The puck’s mass is m � 0.20 kg.
Forces and are directed along the axis and have
magnitudes F1 4.0 N and F2 2.0 N. Force is directedF

:

3��
F
:

2F
:

1

Figure 5-3 In three situations, forces act on a puck that moves
along an x axis. Free-body diagrams are also shown.

F1
x

(a)

Puck
x

A

(b)

F1

F1F2
x

(c)

x

B

(d)

F1F2

F2
x

x

(e)

C

( f )

θ

θ

F3

F2

F3

The horizontal force
causes a horizontal
acceleration.

This is a free-body
diagram.

These forces compete.
Their net force causes
a horizontal acceleration.

This is a free-body
diagram.

Only the horizontal
component of F3
competes with F2.

This is a free-body
diagram.

at angle u � 30� and has magnitude F3 � 1.0 N. In each situ-
ation, what is the acceleration of the puck?

KEY IDEA

In each situation we can relate the acceleration to the net
force acting on the puck with Newton’s second law,

. However, because the motion is along only the x
axis, we can simplify each situation by writing the second
law for x components only:

Fnet, x � max. (5-4)

The free-body diagrams for the three situations are also
given in Fig. 5-3, with the puck represented by a dot.

Situation A: For Fig. 5-3b, where only one horizontal force
acts, Eq. 5-4 gives us

F1 � max,

which, with given data, yields

(Answer)

The positive answer indicates that the acceleration is in the
positive direction of the x axis.

Situation B: In Fig. 5-3d, two horizontal forces act on the
puck, in the positive direction of x and in the negative
direction. Now Eq. 5-4 gives us

F1 � F2 � max,

which, with given data, yields

(Answer)
Thus, the net force accelerates the puck in the positive direc-
tion of the x axis.

Situation C: In Fig. 5-3f, force is not directed along the
direction of the puck’s acceleration; only x component F3,x

is. (Force is two-dimensional but the motion is only one-F
:

3

F
:

3

ax �
F1 � F2

m
�

4.0 N � 2.0 N
0.20 kg

� 10 m/s2.

F
:

2F
:

1

ax �
F1

m
�

4.0 N
0.20 kg

� 20 m/s2.

F
:

net � ma:
F
:

net

a:

dimensional.) Thus, we write Eq. 5-4 as

F3,x � F2 � max. (5-5)

From the figure, we see that F3,x � F3 cos u. Solving for the
acceleration and substituting for F3,x yield

(Answer)

Thus, the net force accelerates the puck in the negative di-
rection of the x axis.

�
(1.0 N)(cos 30�) � 2.0 N

0.20 kg
� �5.7 m/s2.

ax �
F3,x � F2

m
�

F3 cos � � F2

m

Additional examples, video, and practice available at WileyPLUS
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x components: Along the x axis we have

F3,x � max � F1,x � F2,x

� m(a cos 50�) � F1 cos(�150�) � F2 cos 90�.

Then, substituting known data, we find

F3,x � (2.0 kg)(3.0 m/s2) cos 50� � (10 N) cos(�150�)

� (20 N) cos 90�

� 12.5 N.

y components: Similarly, along the y axis we find

F3,y � may � F1,y � F2,y

� m(a sin 50�) � F1 sin(�150�) � F2 sin 90�

� (2.0 kg)(3.0 m/s2) sin 50� � (10 N) sin(�150�)

� (20 N) sin 90�

� �10.4 N.

Vector: In unit-vector notation, we can write

� F3,x � F3,y � (12.5 N) � (10.4 N)

� (13 N) � (10 N) . (Answer)

We can now use a vector-capable calculator to get the mag-
nitude and the angle of .We can also use Eq. 3-6 to obtain
the magnitude and the angle (from the positive direction of
the x axis) as

and (Answer)� � tan�1
F3,y

F3, x
� �40�.

F3 � 2F 3,x
2 � F 2

3,y � 16 N

F
:

3

ĵî

ĵîĵîF
:

3

Sample Problem 5.02 Two-dimensional forces, cookie tin

Here we find a missing force by using the acceleration. In
the overhead view of Fig. 5-4a, a 2.0 kg cookie tin is acceler-
ated at 3.0 m/s2 in the direction shown by , over a friction-
less horizontal surface. The acceleration is caused by three
horizontal forces, only two of which are shown: of magni-
tude 10 N and of magnitude 20 N. What is the third force

in unit-vector notation and in magnitude-angle notation?

KEY IDEA

The net force on the tin is the sum of the three forces
and is related to the acceleration via Newton’s second law

.Thus,

, (5-6)

which gives us

(5-7)

Calculations: Because this is a two-dimensional problem,
we cannot find merely by substituting the magnitudes for
the vector quantities on the right side of Eq. 5-7. Instead, we
must vectorially add , (the reverse of ), and 
(the reverse of ), as shown in Fig. 5-4b. This addition can
be done directly on a vector-capable calculator because we
know both magnitude and angle for all three vectors.
However, here we shall evaluate the right side of Eq. 5-7 in
terms of components, first along the x axis and then along
the y axis. Caution: Use only one axis at a time.

F
:

2

�F
:

2F
:

1�F
:

1ma:

F
:

3

F 3
:

� ma: � F
:

1 � F 2
:

.

F
:

1 � F 2
:

� F 3
:

� ma:

(F
:

net � ma: )
a:

F
:

net

F
:

3

F
:

2

F
:

1

a:

Additional examples, video, and practice available at WileyPLUS

Figure 5-4 (a) An overhead view of two of three horizontal forces that act on a cookie
tin, resulting in acceleration . is not shown. (b) An arrangement of vectors , ,
and to find force .F

:

3�F
:

2

�F
:

1ma:F
:

3a:

y

(a)

30°
x

y

(b)

x

F2

F3

F2

F1

a

a
50°

m
–

F1–

These are two
of the three
horizontal force
vectors.

This is the resulting
horizontal acceleration
vector.

We draw the product
of mass and acceleration
as a vector.

Then we can add the three
vectors to find the missing
third force vector.



Some Particular Forces
The Gravitational Force
A gravitational force on a body is a certain type of pull that is directed toward
a second body. In these early chapters, we do not discuss the nature of this force
and usually consider situations in which the second body is Earth. Thus, when we
speak of the gravitational force on a body, we usually mean a force that pulls
on it directly toward the center of Earth—that is, directly down toward the
ground.We shall assume that the ground is an inertial frame.

Free Fall. Suppose a body of mass m is in free fall with the free-fall accelera-
tion of magnitude g.Then, if we neglect the effects of the air, the only force acting
on the body is the gravitational force . We can relate this downward force andF

:

g

F
:

g

F
:

g
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5-2 SOME PARTICULAR FORCES

After reading this module, you should be able to . . .

5.08 Determine the magnitude and direction of the gravita-
tional force acting on a body with a given mass, at a location
with a given free-fall acceleration.

5.09 Identify that the weight of a body is the magnitude of the
net force required to prevent the body from falling freely, as
measured from the reference frame of the ground. 

5.10 Identify that a scale gives an object’s weight when the
measurement is done in an inertial frame but not in an ac-
celerating frame, where it gives an apparent weight.

5.11 Determine the magnitude and direction of the normal
force on an object when the object is pressed or pulled
onto a surface.

5.12 Identify that the force parallel to the surface is a frictional
force that appears when the object slides or attempts to
slide along the surface.

5.13 Identify that a tension force is said to pull at both ends of
a cord (or a cord-like object) when the cord is taut.

Learning Objectives

Key Ideas
● A gravitational force on a body is a pull by another body.
In most situations in this book, the other body is Earth or
some other astronomical body. For Earth, the force is directed
down toward the ground, which is assumed to be an inertial
frame. With that assumption, the magnitude of is

where m is the body’s mass and g is the magnitude of the
free-fall acceleration.

● The weight W of a body is the magnitude of the upward force
needed to balance the gravitational force on the body. A body’s
weight is related to the body’s mass by

W � mg.

Fg � mg,

Fg
:

Fg
:

● A normal force is the force on a body from a surface
against which the body presses. The normal force is always
perpendicular to the surface.

● A frictional force is the force on a body when the body
slides or attempts to slide along a surface. The force is always
parallel to the surface and directed so as to oppose the slid-
ing. On a frictionless surface, the frictional force is negligible.

● When a cord is under tension, each end of the cord pulls
on a body. The pull is directed along the cord, away from the
point of attachment to the body. For a massless cord (a cord
with negligible mass), the pulls at both ends of the cord have
the same magnitude T, even if the cord runs around a mass-
less, frictionless pulley (a pulley with negligible mass and
negligible friction on its axle to oppose its rotation).

f
:

FN
:

downward acceleration with Newton’s second law . We place a vertical
y axis along the body’s path, with the positive direction upward. For this axis,
Newton’s second law can be written in the form Fnet,y � may, which, in our
situation, becomes

�Fg � m(�g)

or Fg � mg. (5-8)

In words, the magnitude of the gravitational force is equal to the product mg.

(F
:

� ma ):



At Rest. This same gravitational force, with the same magnitude, still acts on
the body even when the body is not in free fall but is, say, at rest on a pool table or
moving across the table. (For the gravitational force to disappear, Earth would
have to disappear.)

We can write Newton’s second law for the gravitational force in these vector
forms:

� �Fg ĵ � �mg ĵ � (5-9)

where ĵ is the unit vector that points upward along a y axis, directly away from
the ground, and is the free-fall acceleration (written as a vector), directed
downward.

Weight
The weight W of a body is the magnitude of the net force required to prevent the
body from falling freely, as measured by someone on the ground. For example, to
keep a ball at rest in your hand while you stand on the ground, you must provide
an upward force to balance the gravitational force on the ball from Earth.
Suppose the magnitude of the gravitational force is 2.0 N. Then the magnitude of
your upward force must be 2.0 N, and thus the weight W of the ball is 2.0 N. We
also say that the ball weighs 2.0 N and speak about the ball weighing 2.0 N.

A ball with a weight of 3.0 N would require a greater force from you—
namely, a 3.0 N force—to keep it at rest.The reason is that the gravitational force
you must balance has a greater magnitude—namely, 3.0 N. We say that this sec-
ond ball is heavier than the first ball.

Now let us generalize the situation. Consider a body that has an acceleration
of zero relative to the ground, which we again assume to be an inertial frame.

Two forces act on the body: a downward gravitational force and a balancing
upward force of magnitude W. We can write Newton’s second law for a vertical y
axis, with the positive direction upward, as

Fnet,y � may.

In our situation, this becomes

W � Fg � m(0) (5-10)

or W � Fg (weight, with ground as inertial frame). (5-11)

This equation tells us (assuming the ground is an inertial frame) that

F
:

g

a:

g:

mg:,F
:

g
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The weight W of a body is equal to the magnitude Fg of the gravitational force
on the body.

Substituting mg for Fg from Eq. 5-8, we find

W � mg (weight), (5-12)

which relates a body’s weight to its mass.
Weighing. To weigh a body means to measure its weight. One way to do this

is to place the body on one of the pans of an equal-arm balance (Fig. 5-5) and
then place reference bodies (whose masses are known) on the other pan until we
strike a balance (so that the gravitational forces on the two sides match). The
masses on the pans then match, and we know the mass of the body. If we know
the value of g for the location of the balance, we can also find the weight of the
body with Eq. 5-12.

We can also weigh a body with a spring scale (Fig. 5-6). The body stretches
a spring, moving a pointer along a scale that has been calibrated and marked in

Figure 5-5 An equal-arm balance. When the
device is in balance, the gravitational force

on the body being weighed (on the leftF
:

gL

FgL = mLg FgR = mRg

mRmL

Figure 5-6 A spring scale. The reading is
proportional to the weight of the object on
the pan, and the scale gives that weight if
marked in weight units. If, instead, it is
marked in mass units, the reading is the
object’s weight only if the value of g at the
location where the scale is being used is
the same as the value of g at the location
where the scale was calibrated.

Fg = mg

Scale marked 
in either 
weight or 
mass units 

pan) and the total gravitational force 
on the reference bodies (on the right pan)
are equal. Thus, the mass mL of the body
being weighed is equal to the total mass
mR of the reference bodies.

F
:

gR



Figure 5-7 (a) A block resting on a table experiences a normal force perpendicular to
the tabletop. (b) The free-body diagram for the block.

F
:

N

Block

Normal force FN

(a) (b)

y

x

Block

Fg
Fg

FN

The normal force
is the force on
the block from the
supporting table.

The gravitational
force on the block
is due to Earth's
downward pull.

The forces
balance.
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either mass or weight units. (Most bathroom scales in the United States work this
way and are marked in the force unit pounds.) If the scale is marked in
mass units, it is accurate only where the value of g is the same as where the scale
was calibrated.

The weight of a body must be measured when the body is not accelerating
vertically relative to the ground. For example, you can measure your weight on a
scale in your bathroom or on a fast train. However, if you repeat the measure-
ment with the scale in an accelerating elevator, the reading differs from your
weight because of the acceleration. Such a measurement is called an apparent
weight.

Caution: A body’s weight is not its mass. Weight is the magnitude of a force
and is related to mass by Eq. 5-12. If you move a body to a point where the value
of g is different, the body’s mass (an intrinsic property) is not different but the
weight is. For example, the weight of a bowling ball having a mass of 7.2 kg is 71 N
on Earth but only 12 N on the Moon. The mass is the same on Earth and Moon,
but the free-fall acceleration on the Moon is only 1.6 m/s2.

The Normal Force
If you stand on a mattress, Earth pulls you downward, but you remain stationary.
The reason is that the mattress, because it deforms downward due to you, pushes
up on you. Similarly, if you stand on a floor, it deforms (it is compressed, bent, or
buckled ever so slightly) and pushes up on you. Even a seemingly rigid concrete
floor does this (if it is not sitting directly on the ground, enough people on the
floor could break it).

The push on you from the mattress or floor is a normal force . The name
comes from the mathematical term normal, meaning perpendicular:The force on
you from, say, the floor is perpendicular to the floor.

F
:

N

When a body presses against a surface, the surface (even a seemingly rigid one)
deforms and pushes on the body with a normal force that is perpendicular to
the surface.

F
:

N

Figure 5-7a shows an example. A block of mass m presses down on a table,
deforming it somewhat because of the gravitational force on the block. TheF

:

g
table pushes up on the block with normal force .The free-body diagram for the
block is given in Fig. 5-7b. Forces and are the only two forces on the block
and they are both vertical. Thus, for the block we can write Newton’s second law
for a positive-upward y axis (Fnet, y � may) as

FN � Fg � may.
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From Eq. 5-8, we substitute mg for Fg, finding

Checkpoint 3
In Fig. 5-7, is the magnitude of the normal force greater than, less than, or equal to
mg if the block and table are in an elevator moving upward (a) at constant speed and
(b) at increasing speed?

F
:

N

Friction
If we either slide or attempt to slide a body over a surface, the motion is resisted
by a bonding between the body and the surface. (We discuss this bonding more in
the next chapter.) The resistance is considered to be a single force called either
the frictional force or simply friction. This force is directed along the surface, op-
posite the direction of the intended motion (Fig. 5-8). Sometimes, to simplify a sit-
uation, friction is assumed to be negligible (the surface, or even the body, is said
to be frictionless).

Tension
When a cord (or a rope, cable, or other such object) is attached to a body and
pulled taut, the cord pulls on the body with a force directed away from the
body and along the cord (Fig. 5-9a). The force is often called a tension force
because the cord is said to be in a state of tension (or to be under tension), which
means that it is being pulled taut.The tension in the cord is the magnitude T of the
force on the body. For example, if the force on the body from the cord has magni-
tude T � 50 N, the tension in the cord is 50 N.

A cord is often said to be massless (meaning its mass is negligible compared
to the body’s mass) and unstretchable. The cord then exists only as a connection
between two bodies. It pulls on both bodies with the same force magnitude T,

T
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Figure 5-8 A frictional force opposes the
attempted slide of a body over a surface.
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TThe forces at the two ends of
the cord are equal in magnitude.

Figure 5-9 (a) The cord, pulled taut, is under tension. If its mass is negligible, the cord
pulls on the body and the hand with force , even if the cord runs around a massless,
frictionless pulley as in (b) and (c).

T
:

FN � mg � may.

Then the magnitude of the normal force is

FN � mg � may � m(g � ay) (5-13)

for any vertical acceleration ay of the table and block (they might be in an accel-
erating elevator). (Caution: We have already included the sign for g but ay can be
positive or negative here.) If the table and block are not accelerating relative to
the ground, then ay � 0 and Eq. 5-13 yields

FN � mg. (5-14)



Newton’s Third Law
Two bodies are said to interact when they push or pull on each other—that is,
when a force acts on each body due to the other body. For example, suppose you
position a book B so it leans against a crate C (Fig. 5-10a). Then the book and
crate interact: There is a horizontal force on the book from the crate (or due
to the crate) and a horizontal force on the crate from the book (or due to the
book).This pair of forces is shown in Fig. 5-10b. Newton’s third law states that

F
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CB

F
:

BC

Newton’s Third Law: When two bodies interact, the forces on the bodies from each
other are always equal in magnitude and opposite in direction.

For the book and crate, we can write this law as the scalar relation

FBC � FCB (equal magnitudes)

or as the vector relation

(equal magnitudes and opposite directions), (5-15)

where the minus sign means that these two forces are in opposite directions. We
can call the forces between two interacting bodies a third-law force pair. When

F
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BC � �F
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Figure 5-10 (a) Book B leans against crate
C. (b) Forces (the force on the book
from the crate) and (the force on the
crate from the book) have the same mag-
nitude and are opposite in direction.
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FCBFBC

B

The force on B
due to C has the same
magnitude as the 
force on C due to B.
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even if the bodies and the cord are accelerating and even if the cord runs around
a massless, frictionless pulley (Figs. 5-9b and c). Such a pulley has negligible mass
compared to the bodies and negligible friction on its axle opposing its rotation. If
the cord wraps halfway around a pulley, as in Fig. 5-9c, the net force on the pulley
from the cord has the magnitude 2T.

Checkpoint 4
The suspended body in Fig. 5-9c weighs 75 N. Is T equal to, greater than, or less than
75 N when the body is moving upward (a) at constant speed, (b) at increasing speed,
and (c) at decreasing speed?

5-3 APPLYING NEWTON’S LAWS 

After reading this module, you should be able to . . .

5.14 Identify Newton’s third law of motion and third-law force pairs.
5.15 For an object that moves vertically or on a horizontal or inclined

plane, apply Newton’s second law to a free-body diagram of the
object.

5.16 For an arrangement where a system of several objects
moves rigidly together, draw a free-body diagram and
apply Newton’s second law for the individual objects
and also for the system taken as a composite object.

● The net force on a body with mass m is related to the body’s
acceleration by

,

which may be written in the component versions

.Fnet,x � max Fnet,y � may and Fnet,z � maz

Fnet
:

� ma:
a:

Fnet
:

● If a force acts on body B due to body C, then there is
a force on body C due to body B:

The forces are equal in magnitude but opposite in directions.

FBC

:
� �FCB

: .

FCB
:

FBC
:

Learning Objectives

Key Ideas
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Earth E

Table T

Cantaloupe C

(a)

(b)

( c)

F CE  (gravitational force)

F CT

(d)

F TC

Earth

Cantaloupe

F CT  (normal force from table)

FCE

FEC

These forces
just happen
to be balanced.

These are
third-law force
pairs.

So are these.

Figure 5-11 (a) A cantaloupe lies on a table that stands on Earth. (b) The forces on
the cantaloupe are and . (c) The third-law force pair for the cantaloupe–Earth
interaction. (d) The third-law force pair for the cantaloupe–table interaction.
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any two bodies interact in any situation, a third-law force pair is present. The
book and crate in Fig. 5-10a are stationary, but the third law would still hold if
they were moving and even if they were accelerating.

As another example, let us find the third-law force pairs involving the can-
taloupe in Fig. 5-11a, which lies on a table that stands on Earth. The cantaloupe
interacts with the table and with Earth (this time, there are three bodies whose
interactions we must sort out).

Let’s first focus on the forces acting on the cantaloupe (Fig. 5-11b). Force
is the normal force on the cantaloupe from the table, and force is the

gravitational force on the cantaloupe due to Earth. Are they a third-law force
pair? No, because they are forces on a single body, the cantaloupe, and not on
two interacting bodies.

To find a third-law pair, we must focus not on the cantaloupe but on the
interaction between the cantaloupe and one other body. In the cantaloupe–Earth
interaction (Fig. 5-11c), Earth pulls on the cantaloupe with a gravitational force

and the cantaloupe pulls on Earth with a gravitational force . Are these
forces a third-law force pair? Yes, because they are forces on two interacting bod-
ies, the force on each due to the other.Thus, by Newton’s third law,

(cantaloupe–Earth interaction).

Next, in the cantaloupe–table interaction, the force on the cantaloupe from
the table is and, conversely, the force on the table from the cantaloupe is 
(Fig. 5-11d).These forces are also a third-law force pair, and so

(cantaloupe–table interaction).F
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CT � �F
:

TC

F
:

TCF
:

CT

F
:

CE � �F
:

EC

F
:

ECF
:

CE

F
:

CEF
:

CT

Checkpoint 5
Suppose that the cantaloupe and table of Fig. 5-11 are in an elevator cab that begins to
accelerate upward. (a) Do the magnitudes of and increase, decrease, or stay
the same? (b) Are those two forces still equal in magnitude and opposite in direction?
(c) Do the magnitudes of and increase,decrease,or stay the same? (d) Are those
two forces still equal in magnitude and opposite in direction?
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Applying Newton’s Laws
The rest of this chapter consists of sample problems. You should pore over 
them, learning their procedures for attacking a problem. Especially important is
knowing how to translate a sketch of a situation into a free-body diagram with
appropriate axes, so that Newton’s laws can be applied.

Sample Problem 5.03 Block on table, block hanging

Figure 5-12 shows a block S (the sliding block) with mass
M � 3.3 kg. The block is free to move along a horizontal
frictionless surface and connected, by a cord that wraps over
a frictionless pulley, to a second block H (the hanging
block), with mass m � 2.1 kg. The cord and pulley have neg-
ligible masses compared to the blocks (they are “massless”).
The hanging block H falls as the sliding block S accelerates
to the right. Find (a) the acceleration of block S, (b) the ac-
celeration of block H, and (c) the tension in the cord.

Q What is this problem all about?
You are given two bodies—sliding block and hanging

block—but must also consider Earth, which pulls on both
bodies. (Without Earth, nothing would happen here.) A to-
tal of five forces act on the blocks, as shown in Fig. 5-13:

1. The cord pulls to the right on sliding block S with a force
of magnitude T.

2. The cord pulls upward on hanging block H with a force
of the same magnitude T. This upward force keeps block
H from falling freely.

3. Earth pulls down on block S with the gravitational force
which has a magnitude equal to Mg.

4. Earth pulls down on block H with the gravitational force
which has a magnitude equal to mg.

5. The table pushes up on block S with a normal force .

There is another thing you should note. We assume that
the cord does not stretch, so that if block H falls 1 mm in a

F
:

N

F
:

gH,

F
:

gS,

certain time, block S moves 1 mm to the right in that same
time. This means that the blocks move together and their
accelerations have the same magnitude a.

Q How do I classify this problem? Should it suggest a par-
ticular law of physics to me?
Yes. Forces, masses, and accelerations are involved, and

they should suggest Newton’s second law of motion,
.That is our starting key idea.

Q If I apply Newton’s second law to this problem, to which
body should I apply it?
We focus on two bodies, the sliding block and the hanging

block. Although they are extended objects (they are not
points), we can still treat each block as a particle because
every part of it moves in exactly the same way. A second key
idea is to apply Newton’s second law separately to each block.

Q What about the pulley?
We cannot represent the pulley as a particle because

different parts of it move in different ways. When we dis-
cuss rotation, we shall deal with pulleys in detail.
Meanwhile, we eliminate the pulley from consideration by
assuming its mass to be negligible compared with the
masses of the two blocks. Its only function is to change the
cord’s orientation.

Q OK. Now how do I apply to the sliding block?
Represent block S as a particle of mass M and draw all

the forces that act on it, as in Fig. 5-14a. This is the block’s
free-body diagram. Next, draw a set of axes. It makes sense

F
:

net � ma:

ma:
F
:

net �

Figure 5-12 A block S of mass M is connected to a block H of mass
m by a cord that wraps over a pulley.

Sliding
block S

Hanging
block H

Frictionless
surface

M

m

FgH

T

T

FgS

Block H 

Block S 

m

M

FN

Figure 5-13 The forces acting on the two blocks of Fig. 5-12.
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to draw the x axis parallel to the table, in the direction in
which the block moves.

Q Thanks, but you still haven’t told me how to apply
to the sliding block.All you’ve done is explain

how to draw a free-body diagram.
You are right, and here’s the third key idea: The

expression is a vector equation, so we can write
it as three component equations:

Fnet,x � Max Fnet,y � May Fnet,z � Maz (5-16)

in which Fnet,x, Fnet,y, and Fnet,z are the components of the net
force along the three axes. Now we apply each component
equation to its corresponding direction. Because block S
does not accelerate vertically, Fnet, y � May becomes

FN � FgS � 0 or FN � FgS. (5-17)

Thus in the y direction, the magnitude of the normal force is
equal to the magnitude of the gravitational force.

No force acts in the z direction, which is perpendicular
to the page.

In the x direction, there is only one force component,
which is T.Thus, Fnet, x � Max becomes

T � Ma. (5-18)

This equation contains two unknowns, T and a; so we cannot
yet solve it. Recall, however, that we have not said anything
about the hanging block.

Q I agree. How do I apply to the hanging block?
We apply it just as we did for block S: Draw a free-body

diagram for block H, as in Fig. 5-14b.Then apply in
component form. This time, because the acceleration is along
the y axis, we use the y part of Eq. 5-16 (Fnet, y � may) to write

T � FgH � may. (5-19)

We can now substitute mg for FgH and �a for ay (negative

F
:

net � ma:

F
:

net � ma:

F
:

net � Ma:

F
:

net � ma:

because block H accelerates in the negative direction of the
y axis).We find

T � mg � �ma. (5-20)

Now note that Eqs. 5-18 and 5-20 are simultaneous equa-
tions with the same two unknowns, T and a. Subtracting
these equations eliminates T.Then solving for a yields

(5-21)

Substituting this result into Eq. 5-18 yields

(5-22)

Putting in the numbers gives, for these two quantities,

(Answer)

and

� 13 N. (Answer)

Q The problem is now solved, right?
That’s a fair question, but the problem is not really fin-

ished until we have examined the results to see whether
they make sense. (If you made these calculations on the job,
wouldn’t you want to see whether they made sense before
you turned them in?)

Look first at Eq. 5-21. Note that it is dimensionally
correct and that the acceleration a will always be less than g
(because of the cord, the hanging block is not in free fall).

Look now at Eq. 5-22, which we can rewrite in the form

(5-23)

In this form, it is easier to see that this equation is also
dimensionally correct, because both T and mg have dimen-
sions of forces. Equation 5-23 also lets us see that the ten-
sion in the cord is always less than mg, and thus is always
less than the gravitational force on the hanging block.That is
a comforting thought because, if T were greater than mg,
the hanging block would accelerate upward.

We can also check the results by studying special cases,
in which we can guess what the answers must be. A simple
example is to put g � 0, as if the experiment were carried out
in interstellar space. We know that in that case, the blocks
would not move from rest, there would be no forces on the
ends of the cord, and so there would be no tension in the
cord. Do the formulas predict this? Yes, they do. If you put
g � 0 in Eqs. 5-21 and 5-22, you find a � 0 and T � 0. Two
more special cases you might try are M � 0 and .m : �

T �
M

M � m
mg.

T �
Mm

M � m
g �

(3.3 kg)(2.1 kg)
3.3 kg � 2.1 kg

 (9.8 m/s2)

� 3.8 m/s2

a �
m

M � m
g �

2.1 kg
3.3 kg � 2.1 kg

 (9.8 m/s2)

T �
Mm

M � m
g.

a �
m

M � m
g.

Figure 5-14 (a) A free-body diagram for block S of Fig. 5-12.
(b) A free-body diagram for block H of Fig. 5-12.
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Additional examples, video, and practice available at WileyPLUS
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Sample Problem 5.04 Cord accelerates box up a ramp

Many students consider problems involving ramps (inclined
planes) to be especially hard. The difficulty is probably visual
because we work with (a) a tilted coordinate system and (b) the
components of the gravitational force, not the full force. Here is
a typical example with all the tilting and angles explained. (In
WileyPLUS, the figure is available as an animation with
voiceover.) In spite of the tilt, the key idea is to apply Newton’s
second law to the axis along which the motion occurs.

In Fig. 5-15a, a cord pulls a box of sea biscuits up along a
frictionless plane inclined at angle u � 30.0�. The box has
mass m � 5.00 kg, and the force from the cord has magni-
tude T � 25.0 N. What is the box’s acceleration a along the
inclined plane?

KEY IDEA

The acceleration along the plane is set by the force compo-
nents along the plane (not by force components perpendi-

cular to the plane), as expressed by Newton’s second law
(Eq. 5-1).

Calculations: We need to write Newton’s second law for
motion along an axis. Because the box moves along the in-
clined plane, placing an x axis along the plane seems reason-
able (Fig. 5-15b). (There is nothing wrong with using our
usual coordinate system, but the expressions for compo-
nents would be a lot messier because of the misalignment of
the x axis with the motion.)

After choosing a coordinate system, we draw a free-
body diagram with a dot representing the box (Fig. 5-15b).
Then we draw all the vectors for the forces acting on the box,
with the tails of the vectors anchored on the dot. (Drawing
the vectors willy-nilly on the diagram can easily lead to errors,
especially on exams, so always anchor the tails.)

Force from the cord is up the plane and has magni-T
:

θ

y

xFN

Fg

T

(b)

Cord

θ

(a)

The box accelerates.

Normal force

Cord's pull

Gravitational
force

x

T

mg sinθ

(g) (h)

θ mg cos
mg

θ

mg sinθ

y

xFN

(i)

mg cos θ

The net of these
forces determines
the acceleration.

These forces
merely balance.

(e)

Fg

(d)(c)

90° −

θ

θ 90° − θ

θ θ

( f )

θ

This is a right
triangle.

Parallel
component of
Fg

This is also.

Hypotenuse

Adjacent leg
(use cos   )θ

Opposite leg
(use sin   )θ

Perpendicular
component of
Fg

Figure 5-15 (a) A box is pulled up a plane by a
cord. (b) The three forces acting on the
box: the cord’s force the gravitational force

and the normal force (c)–(i) Finding
the force components along the plane and
perpendicular to it. In WileyPLUS, this figure
is available as an animation with voiceover.

FN
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.Fg
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,
T
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A

tude T � 25.0 N. The gravitational force is downward (ofFg
:
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course) and has magnitude mg � (5.00 kg)(9.80 m/s2) � 49.0 N. plane and thus cannot affect the motion along the plane. (It
has no component along the plane to accelerate the box.)

We are now ready to write Newton’s second law for mo-
tion along the tilted x axis:

The component ax is the only component of the acceleration
(the box is not leaping up from the plane, which would be
strange, or descending into the plane, which would be even
stranger). So, let’s simply write a for the acceleration along the
plane. Because is in the positive x direction and the compo-
nent mg sin u is in the negative x direction, we next write

T � mg sin u � ma. (5-24)

Substituting data and solving for a, we find

a � 0.100 m/s2. (Answer)

The result is positive, indicating that the box accelerates up the
inclined plane, in the positive direction of the tilted x axis. If

T
:

Fnet,x � max.

That direction means that only a component of the force is
along the plane, and only that component (not the full force)
affects the box’s acceleration along the plane.Thus, before we
can write Newton’s second law for motion along the x axis, we
need to find an expression for that important component.

Figures 5-15c to h indicate the steps that lead to the ex-
pression. We start with the given angle of the plane and
work our way to a triangle of the force components (they
are the legs of the triangle and the full force is the hy-
potenuse). Figure 5-15c shows that the angle between the
ramp and is 90� � u. (Do you see a right triangle there?)Fg

:

Next, Figs. 5-15d to f show and its components: One com-
ponent is parallel to the plane (that is the one we want) and
the other is perpendicular to the plane.

Because the perpendicular component is perpendicular,
the angle between it and must be u (Fig. 5-15d). The com-
ponent we want is the far leg of the component right trian-
gle. The magnitude of the hypotenuse is mg (the magnitude
of the gravitational force).Thus, the component we want has
magnitude mg sin u (Fig. 5-15g).

We have one more force to consider, the normal force
shown in Fig. 5-15b. However, it is perpendicular to theFN

:

Fg
:

Fg
:

Sample Problem 5.05 Reading a force graph

Here is an example of where you must dig information out
of a graph, not just read off a number. In Fig. 5-16a, two
forces are applied to a 4.00 kg block on a frictionless floor,
but only force is indicated. That force has a fixed magni-
tude but can be applied at an adjustable angle to the posi-
tive direction of the x axis. Force is horizontal and fixed in
both magnitude and angle. Figure 5-16b gives the horizontal
acceleration ax of the block for any given value of u from 0�
to 90�.What is the value of ax for u � 180�?

KEY IDEAS

(1) The horizontal acceleration ax depends on the net hori-
zontal force Fnet, x, as given by Newton’s second law. (2) The
net horizontal force is the sum of the horizontal compo-
nents of forces and .

Calculations: The x component of is F2 because the vector
is horizontal. The x component of is F1 cos . Using these
expressions and a mass m of 4.00 kg, we can write Newton’s
second law ( m ) for motion along the x axis as

F1 cos u � F2 � 4.00ax. (5-25)

From this equation we see that when angle u � 90�, F1 cos u
is zero and F2 � 4.00ax. From the graph we see that the

a:F
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net �

�F
:
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F
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F
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F
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�
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1

Figure 5-16 (a) One of the two forces applied to a block is shown.
Its angle u can be varied. (b) The block’s acceleration component
ax versus u.

When F1 is horizontal,
the acceleration is
3.0 m/s2.
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When F1 is vertical,
the acceleration is
0.50 m/s2.

corresponding acceleration is 0.50 m/s2. Thus, F2 � 2.00 N
and must be in the positive direction of the x axis.F

:

2

we decreased the magnitude of enough to make a � 0, the
box would move up the plane at constant speed.And if we de-
crease the magnitude of even more, the acceleration would
be negative in spite of the cord’s pull.

T
:

T
:

Additional examples, video, and practice available at WileyPLUS

From Eq. 5-25, we find that when u � 0�,

F1 cos 0� � 2.00 � 4.00ax. (5-26)

From the graph we see that the corresponding acceleration
is 3.0 m/s2. From Eq. 5-26, we then find that F1 � 10 N.

Substituting F1 � 10 N, F2 � 2.00 N, and u � 180� into
Eq. 5-25 leads to

ax � �2.00 m/s2. (Answer)
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Sample Problem 5.06 Forces within an elevator cab

Although people would surely avoid getting into the ele-
vator with you, suppose that you weigh yourself while on
an elevator that is moving. Would you weigh more than,
less than, or the same as when the scale is on a stationary
floor?

In Fig. 5-17a, a passenger of mass m 72.2 kg stands on
a platform scale in an elevator cab. We are concerned with
the scale readings when the cab is stationary and when it is
moving up or down.

(a) Find a general solution for the scale reading, whatever
the vertical motion of the cab.

KEY IDEAS

(1) The reading is equal to the magnitude of the normal force
on the passenger from the scale. The only other force act-

ing on the passenger is the gravitational force , as shown in
the free-body diagram of Fig. 5-17b. (2) We can relate the
forces on the passenger to his acceleration by using
Newton’s second law . However, recall that we
can use this law only in an inertial frame. If the cab acceler-
ates, then it is not an inertial frame. So we choose the ground
to be our inertial frame and make any measure of the passen-
ger’s acceleration relative to it.

Calculations: Because the two forces on the passenger and
his acceleration are all directed vertically, along the y axis in
Fig. 5-17b, we can use Newton’s second law written for y
components (Fnet, y � may) to get

FN � Fg � ma

or FN � Fg � ma. (5-27)

(F
:

net � ma:)
a:

F
:

g

F
:

N

�

FN

y

(b)(a)

Passenger

Fg

These forces
compete.
Their net force
causes a vertical
acceleration.

Figure 5-17 (a) A passenger stands on a platform scale that indi-
cates either his weight or his apparent weight. (b) The free-body
diagram for the passenger, showing the normal force on him
from the scale and the gravitational force .F

:

g

F
:

N

This tells us that the scale reading, which is equal to normal
force magnitude FN, depends on the vertical acceleration.
Substituting mg for Fg gives us

FN � m(g � a) (Answer) (5-28)

for any choice of acceleration a. If the acceleration is up-
ward, a is positive; if it is downward, a is negative.

(b) What does the scale read if the cab is stationary or
moving upward at a constant 0.50 m/s?

KEY IDEA

For any constant velocity (zero or otherwise), the accelera-
tion a of the passenger is zero.

Calculation: Substituting this and other known values into
Eq. 5-28, we find

FN � (72.2 kg)(9.8 m/s2 � 0) � 708 N.
(Answer)

This is the weight of the passenger and is equal to the mag-
nitude Fg of the gravitational force on him.

(c) What does the scale read if the cab accelerates upward at
3.20 m/s2 and downward at 3.20 m/s2?

Calculations: For a � 3.20 m/s2, Eq. 5-28 gives

FN � (72.2 kg)(9.8 m/s2 � 3.20 m/s2)

� 939 N, (Answer)

and for a � �3.20 m/s2, it gives

FN � (72.2 kg)(9.8 m/s2 � 3.20 m/s2)

� 477 N. (Answer)

For an upward acceleration (either the cab’s upward
speed is increasing or its downward speed is decreasing),
the scale reading is greater than the passenger’s weight.
That reading is a measurement of an apparent weight, be-
cause it is made in a noninertial frame. For a downward
acceleration (either decreasing upward speed or increas-
ing downward speed), the scale reading is less than the
passenger’s weight.

(d) During the upward acceleration in part (c), what is the
magnitude Fnet of the net force on the passenger, and what is
the magnitude ap,cab of his acceleration as measured in the
frame of the cab? Does ?

Calculation: The magnitude Fg of the gravitational force on
the passenger does not depend on the motion of the passen-
ger or the cab; so, from part (b), Fg is 708 N. From part (c), the
magnitude FN of the normal force on the passenger during

F
:

net � ma:p,cab
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Dead-End Solution: Let us now include force by writ-
ing, again for the x axis,

Fapp � FAB � mAa.

(We use the minus sign to include the direction of .)
Because FAB is a second unknown, we cannot solve this
equation for a.

Successful Solution: Because of the direction in which force
is applied, the two blocks form a rigidly connected system.

We can relate the net force on the system to the acceleration of
the system with Newton’s second law. Here, once again for the
x axis, we can write that law as

Fapp � (mA � mB)a,

where now we properly apply to the system with
total mass mA mB. Solving for a and substituting known
values, we find

(Answer)

Thus, the acceleration of the system and of each block is in the
positive direction of the x axis and has the magnitude 2.0 m/s2.

(b) What is the (horizontal) force on block B from
block A (Fig. 5-18c)?

KEY IDEA 

We can relate the net force on block B to the block’s accel-
eration with Newton’s second law.

Calculation: Here we can write that law, still for compo-
nents along the x axis, as

FBA � mBa,

which, with known values, gives

FBA � (6.0 kg)(2.0 m/s2) � 12 N. (Answer)

Thus, force is in the positive direction of the x axis and
has a magnitude of 12 N.

F
:

BA

F
:

BA

a �
Fapp

mA � mB
�

20 N

4.0 kg � 6.0 kg
� 2.0 m/s2.

�
F
:

app

F
:

app

F
:

AB

F
:

AB

Sample Problem 5.07 Acceleration of block pushing on block

Some homework problems involve objects that move to-
gether, because they are either shoved together or tied to-
gether. Here is an example in which you apply Newton’s
second law to the composite of two blocks and then to the
individual blocks.

In Fig. 5-18a, a constant horizontal force of magni-F
:

app

tude 20 N is applied to block A of mass mA 4.0 kg, which
pushes against block B of mass mB � 6.0 kg.The blocks slide
over a frictionless surface, along an x axis.

(a) What is the acceleration of the blocks?

Serious Error: Because force is applied directly
to block A, we use Newton’s second law to relate that
force to the acceleration of block A. Because the motion
is along the x axis, we use that law for x components
(Fnet, x � max), writing it as

Fapp � mAa.

However, this is seriously wrong because is not the
only horizontal force acting on block A. There is also the
force from block B (Fig. 5-18b).F

:

AB

F
:

app

a:

F
:

app

�

Figure 5-18 (a) A constant horizontal force is applied to block
A, which pushes against block B. (b) Two horizontal forces act on
block A. (c) Only one horizontal force acts on block B.

F
:

app

FBA

(c)

x

B

(a)

x
A

B

Fapp

(b)

xA FABFapp

This force causes the
acceleration of the full
two-block system.

This is the only force
causing the acceleration
of block B.

These are the two forces
acting on just block A.
Their net force causes
its acceleration.

Additional examples, video, and practice available at WileyPLUS

the upward acceleration is the 939 N reading on the scale.Thus,
the net force on the passenger is

Fnet � FN � Fg � 939 N � 708 N � 231 N, (Answer)

during the upward acceleration. However, his acceleration
ap,cab relative to the frame of the cab is zero. Thus, in the non-
inertial frame of the accelerating cab, Fnet is not equal to
map,cab, and Newton’s second law does not hold.



1 Figure 5-19 gives the free-body diagram for four situations in
which an object is pulled by several forces across a frictionless
floor, as seen from overhead. In which situations does the accel-
eration of the object have (a) an x component and (b) a y com-a:

Questions

x x

y y

7 N

3 N

2 N

4 N 4 N

2 N

2 N

6 N

5 N

3 N

(1) (2)

x x

y y

3 N

3 N

3 N
4 N

4 N

5 N

6 N

2 N

5 N

5 N
4 N

(3) (4)

Figure 5-19 Question 1.
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Newtonian Mechanics The velocity of an object can change
(the object can accelerate) when the object is acted on by one or
more forces (pushes or pulls) from other objects. Newtonian me-
chanics relates accelerations and forces.

Force Forces are vector quantities. Their magnitudes are de-
fined in terms of the acceleration they would give the standard
kilogram. A force that accelerates that standard body by exactly
1 m/s2 is defined to have a magnitude of 1 N. The direction of a
force is the direction of the acceleration it causes. Forces are com-
bined according to the rules of vector algebra. The net force on a
body is the vector sum of all the forces acting on the body.

Newton’s First Law If there is no net force on a body, the
body remains at rest if it is initially at rest or moves in a straight
line at constant speed if it is in motion.

Inertial Reference Frames Reference frames in which
Newtonian mechanics holds are called inertial reference frames or
inertial frames. Reference frames in which Newtonian mechanics
does not hold are called noninertial reference frames or noniner-
tial frames.

Mass The mass of a body is the characteristic of that body that
relates the body’s acceleration to the net force causing the acceler-
ation. Masses are scalar quantities.

Newton’s Second Law The net force on a body with
mass m is related to the body’s acceleration by

(5-1)

which may be written in the component versions

Fnet, x � max Fnet, y � may and Fnet, z � maz. (5-2)

The second law indicates that in SI units

1 N � 1 kg �m/s2. (5-3)

F
:

net � ma:,

a:
F
:

net

Review & Summary

A free-body diagram is a stripped-down diagram in which only
one body is considered.That body is represented by either a sketch or
a dot. The external forces on the body are drawn, and a coordinate
system is superimposed, oriented so as to simplify the solution.

Some Particular Forces A gravitational force on a body
is a pull by another body. In most situations in this book, the other
body is Earth or some other astronomical body. For Earth, the
force is directed down toward the ground, which is assumed to be
an inertial frame.With that assumption, the magnitude of is

Fg � mg, (5-8)

where m is the body’s mass and g is the magnitude of the free-fall
acceleration.

The weight W of a body is the magnitude of the upward force
needed to balance the gravitational force on the body. A body’s
weight is related to the body’s mass by

W � mg. (5-12)

A normal force is the force on a body from a surface
against which the body presses.The normal force is always perpen-
dicular to the surface.

A frictional force is the force on a body when the body
slides or attempts to slide along a surface. The force is always par-
allel to the surface and directed so as to oppose the sliding. On a
frictionless surface, the frictional force is negligible.

When a cord is under tension, each end of the cord pulls on a
body.The pull is directed along the cord, away from the point of at-
tachment to the body. For a massless cord (a cord with negligible
mass), the pulls at both ends of the cord have the same magnitude
T, even if the cord runs around a massless, frictionless pulley (a pul-
ley with negligible mass and negligible friction on its axle to op-
pose its rotation).

Newton’s Third Law If a force acts on body B due to
body C, then there is a force on body C due to body B:

F
:

BC � �F
:

CB.

F
:

CB

F
:

BC

f
:

F
:

N

F
:

g

F
:

g

ponent? (c) In each situation, give the direction of by naming
either a quadrant or a direction along an axis. (Don’t reach for
the calculator because this can be answered with a few mental
calculations.)

a:
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7 July 17, 1981, Kansas City: The newly opened Hyatt
Regency is packed with people listening and dancing to a band
playing favorites from the 1940s. Many of the people are crowded
onto the walkways that hang like bridges across the wide atrium.
Suddenly two of the walkways collapse, falling onto the merrymak-
ers on the main floor.

The walkways were suspended one above another on vertical
rods and held in place by nuts threaded onto the rods. In the origi-
nal design, only two long rods were to be used, each extending
through all three walkways (Fig. 5-24a). If each walkway and the
merrymakers on it have a combined mass of M, what is the total
mass supported by the threads and two nuts on (a) the lowest
walkway and (b) the highest walkway?

Apparently someone responsible for the actual construction
realized that threading nuts on a rod is impossible except at the
ends, so the design was changed: Instead, six rods were used, each
connecting two walkways (Fig. 5-24b). What now is the total mass
supported by the threads and two nuts on (c) the lowest walkway,
(d) the upper side of the highest walkway, and (e) the lower side of
the highest walkway? It was this design that failed on that tragic
night—a simple engineering error.

2 Two horizontal forces,

pull a banana split across a friction-
less lunch counter. Without using a
calculator, determine which of the
vectors in the free-body diagram of
Fig. 5-20 best represent (a) and
(b) . What is the net-force compo-
nent along (c) the x axis and (d) the y
axis? Into which quadrants do (e) the
net-force vector and (f) the split’s ac-
celeration vector point?

3 In Fig. 5-21, forces and 
are applied to a lunchbox as it
slides at constant velocity over a
frictionless floor. We are to de-
crease angle u without changing the
magnitude of . For constant ve-
locity, should we increase, decrease,
or maintain the magnitude of ?

4 At time t � 0, constant begins
to act on a rock moving through
deep space in the +x direction. (a)
For time t � 0, which are possible functions x(t) for the rock’s posi-
tion: (1) x � 4t � 3, (2) x � �4t2 � 6t � 3, (3) x � 4t2 � 6t � 3? (b)
For which function is directed opposite the rock’s initial direction
of motion?

5 Figure 5-22 shows overhead views of four situations in which
forces act on a block that lies on a frictionless floor. If the force
magnitudes are chosen properly, in which situations is it possible
that the block is (a) stationary and (b) moving with a constant
velocity?

F
:

F
:

F
:

2

F
:

1

F
:

2F
:

1

F
:

2

F
:

1

F
:

1 � (3 N)î � (4 N)ĵ  and  F
:

2 � �(1 N)î � (2 N)ĵ

Figure 5-21 Question 3.

y

x

58

4

32

67

1

Figure 5-20 Question 2.

θ F2

F1

Figure 5-22 Question 5.

(1) F2

F1

F3

(3) (4) 

(2) F1

F1

F1

F3

F2

F2

F2

6 N 3 N 

(a)

60 N 58 N 

(b)

15 N 13 N 

(c)

25 N 

20 N 

43 N 

(d)

Figure 5-23 Question 6.

6 Figure 5-23 shows the same breadbox in four situations where
horizontal forces are applied. Rank the situations according to the
magnitude of the box’s acceleration, greatest first.

Rods

Nuts

Walkways

(a) (b)

Figure 5-24 Question 7.

8 Figure 5-25 gives three graphs of velocity component vx(t) and
three graphs of velocity component vy(t). The graphs are not to
scale. Which vx(t) graph and which vy(t) graph best correspond to
each of the four situations in Question 1 and Fig. 5-19?

Figure 5-25 Question 8.
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t

(b)
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••5 Three astronauts, propelled
by jet backpacks, push and guide a
120 kg asteroid toward a processing
dock, exerting the forces shown in
Fig. 5-29, with F1 � 32 N, F2 � 55 N,
F3 � 41 N, u1 � 30�, and u3 � 60�.
What is the asteroid’s acceleration
(a) in unit-vector notation and as (b) a magnitude and (c) a direc-
tion relative to the positive direction of the x axis?

••6 In a two-dimensional tug-of-
war, Alex, Betty, and Charles pull
horizontally on an automobile tire at
the angles shown in the overhead
view of Fig. 5-30. The tire remains
stationary in spite of the three pulls.
Alex pulls with force of magni-
tude 220 N, and Charles pulls with
force of magnitude 170 N. Note
that the direction of is not given.
What is the magnitude of Betty’s
force

••7 There are two forces on the
2.00 kg box in the overhead view of
Fig. 5-31, but only one is shown. For
F1 � 20.0 N,a � 12.0 m/s2,and u� 30.0�,
find the second force (a) in unit-vector
notation and as (b) a magnitude and
(c) an angle relative to the positive di-
rection of the x axis.

••8 A 2.00 kg object is subjected to
three forces that give it an acceleration

. If
two of the three forces are

and
find the third force.

••9 A 0.340 kg particle moves in an xy plane according 
to x(t) � �15.00 � 2.00t � 4.00t3 and y(t) � 25.00 � 7.00t � 9.00t2,
with x and y in meters and t in seconds. At t � 0.700 s, what are

�(12.0 N)î � (8.00 N)ĵ,
F2
:

�F1
:

� (30.0 N)î � (16.0 N)ĵ

a: � �(8.00 m/s2)î � (6.00 m/s2)ĵ

SSM

F
:

B?

F
:

C

F
:

C

F
:

A

Module 5-1 Newton’s First and Second Laws
•1 Only two horizontal forces act on a 3.0 kg body that can move
over a frictionless floor. One force is 9.0 N, acting due east, and the
other is 8.0 N, acting 62� north of west. What is the magnitude of
the body’s acceleration?

•2 Two horizontal forces act on a 2.0 kg chopping block that can
slide over a frictionless kitchen counter, which lies in an xy plane.
One force is Find the acceleration of the
chopping block in unit-vector notation when the other force is
(a) (b) 
and (c) .

•3 If the 1 kg standard body has an acceleration of 2.00 m/s2 at
20.0� to the positive direction of an x axis, what are (a) the x com-
ponent and (b) the y component of the net force acting on the
body, and (c) what is the net force in unit-vector notation?

••4 While two forces act on it, a
particle is to move at the constant
velocity One
of the forces is 

What is the other force?(�6 N)ĵ.
F1
:

� (2 N)î �
v: � (3 m/s)î � (4 m/s)ĵ.

(�4.0 N)ĵF
:

2 � (3.0 N)î �
(�3.0 N)î � (4.0 N)ĵ,F

:

2 �F
:

2 � (�3.0 N)î � (�4.0 N)ĵ,

F
:

1 � (3.0 N)î � (4.0 N)ĵ.

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems
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F2

F3

1θ 

3θ 

Figure 5-29 Problem 5.

Figure 5-30 Problem 6.

Alex
Charles

Betty137°

x

y

θ 

F1

a

Figure 5-31 Problem 7.
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9 Figure 5-26 shows a train of four blocks being pulled across a
frictionless floor by force . What total mass is accelerated to the
right by (a) force , (b) cord 3, and (c) cord 1? (d) Rank the blocks
according to their accelerations, greatest first. (e) Rank the cords
according to their tension, greatest first.

F
:

F
:

on block 3 from block 2? (d) Rank the blocks according to
their acceleration magnitudes, greatest first. (e) Rank forces , ,
and according to magnitude, greatest first.

11 A vertical force is applied to a block of mass m that lies on
a floor.What happens to the magnitude of the normal force on
the block from the floor as magnitude F is increased from zero if
force is (a) downward and (b) upward?

12 Figure 5-28 shows four choices for the direction of a force of
magnitude F to be applied to a block
on an inclined plane. The directions
are either horizontal or vertical.
(For choice b, the force is not
enough to lift the block off the
plane.) Rank the choices according
to the magnitude of the normal
force acting on the block from the
plane, greatest first.

F
:

F
:

N

F
:

F
:

32

F
:

21F
:

F
:

32

10 Figure 5-27 shows three blocks
being pushed across a frictionless
floor by horizontal force . What to-
tal mass is accelerated to the right
by (a) force , (b) force on
block 2 from block 1, and (c) force

F
:

21F
:

F
:

Cord
1

Cord
2

Cord
3

10 kg 3 kg 5 kg 2 kg 
F

Figure 5-26 Question 9.

30°

a
c

b

d

Figure 5-28 Question 12.

21

2 kg 

10 kg 
5 kg 

3

F

Figure 5-27 Question 10.

http://www.wiley.com/college/halliday
www.flyingcircusofphysics.com


Module 5-2 Some Particular Forces
•13 Figure 5-33 shows an arrangement in
which four disks are suspended by cords. The
longer, top cord loops over a frictionless pul-
ley and pulls with a force of magnitude 98 N
on the wall to which it is attached.The tensions
in the three shorter cords are T1 � 58.8 N,
T2 � 49.0 N, and T3 � 9.8 N. What are the
masses of (a) disk A, (b) disk B, (c) disk C,
and (d) disk D?

•14 A block with a weight of 3.0 N is at
rest on a horizontal surface. A 1.0 N upward
force is applied to the block by means of an
attached vertical string. What are the (a)
magnitude and (b) direction of the force of
the block on the horizontal surface?

•15 (a) An 11.0 kg salami is supported by a cord that runs to
a spring scale, which is supported by a cord hung from the ceiling
(Fig. 5-34a). What is the reading on the scale, which is marked in SI
weight units? (This is a way to measure weight by a deli owner.) (b)
In Fig. 5-34b the salami is supported by a cord that runs around a
pulley and to a scale. The opposite end of the scale is attached by a
cord to a wall. What is the reading on the scale? (This is the way by
a physics major.) (c) In Fig. 5-34c the wall has been replaced with a
second 11.0 kg salami, and the assembly is stationary. What is the

SSM
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(a) the magnitude and (b) the angle (relative to the positive direc-
tion of the x axis) of the net force on the particle, and (c) what is
the angle of the particle’s direction of travel?

••10 A 0.150 kg particle moves along an x axis according 

vx (m/s)

t (s)

4

2

0 1 2 3
–2

–4

Figure 5-32 Problem 12.
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C

D

T1

T2

T3

Figure 5-33
Problem 13.

reading on the scale? (This is the way by a deli owner who was
once a physics major.)
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Spring scale 

Spring
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(b)

(c)

(a)

Figure 5-34 Problem 15.

••16 Some insects can walk below
a thin rod (such as a twig) by hang-
ing from it. Suppose that such an in-
sect has mass m and hangs from a
horizontal rod as shown in Fig. 5-35,
with angle u � 40�. Its six legs are all
under the same tension, and the leg
sections nearest the body are hori-
zontal. (a) What is the ratio of the
tension in each tibia (forepart of a leg) to the insect’s weight? (b) If
the insect straightens out its legs somewhat, does the tension in each
tibia increase, decrease, or stay the same?

Module 5-3 Applying
Newton’s Laws
•17 In Fig. 5-36,
let the mass of the block be
8.5 kg and the angle be 30�.
Find (a) the tension in the cord
and (b) the normal force acting
on the block. (c) If the cord is
cut, find the magnitude of the re-
sulting acceleration of the block.

•18 In April 1974, John
Massis of Belgium managed to
move two passenger railroad
cars. He did so by clamping his teeth down on a bit that was at-
tached to the cars with a rope and then leaning backward while
pressing his feet against the railway ties.The cars together weighed
700 kN (about 80 tons). Assume that he pulled with a constant
force that was 2.5 times his body weight, at an upward angle u of
30� from the horizontal. His mass was 80 kg, and he moved the cars
by 1.0 m. Neglecting any retarding force from the wheel rotation,
find the speed of the cars at the end of the pull.

�

WWWSSM

θ 

Leg
joint Tibia

Rod

Figure 5-35 Problem 16.

m Frictionless

θ 

Figure 5-36 Problem 17.

to x(t) � �13.00 � 2.00t � 4.00t2 � 3.00t3, with x in meters and t in
seconds. In unit-vector notation, what is the net force acting on the
particle at t � 3.40 s?

••11 A 2.0 kg particle moves along an x axis, being propelled by a
variable force directed along that axis. Its position is given by x �
3.0 m � (4.0 m/s)t � ct2 � (2.0 m/s3)t3, with x in meters and t in
seconds.The factor c is a constant.At t � 3.0 s, the force on the par-
ticle has a magnitude of 36 N and is in the negative direction of the
axis.What is c?

•••12 Two horizontal forces and act on a 4.0 kg disk that
slides over frictionless ice, on which an xy coordinate system is laid
out. Force is in the positive direction of the x axis and has a mag-
nitude of 7.0 N. Force has a magnitude of 9.0 N. Figure 5-32
gives the x component vx of the velocity of the disk as a function of
time t during the sliding. What is the angle between the constant di-
rections of forces and ?F
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:

1

F
:
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:

1

F
:

2F
:

1



•24 There are two horizontal
forces on the 2.0 kg box in the over-
head view of Fig. 5-38 but only one
(of magnitude F1 � 20 N) is shown.
The box moves along the x axis. For
each of the following values for the acceleration ax of the box,
find the second force in unit-vector notation: (a) 10 m/s2, (b) 20 m/s2,
(c) 0, (d) �10 m/s2, and (e) �20 m/s2.

•25 Sunjamming. A “sun yacht” is a spacecraft with a large sail
that is pushed by sunlight.Although such a push is tiny in everyday
circumstances, it can be large enough to send the spacecraft
outward from the Sun on a cost-free but slow trip. Suppose that
the spacecraft has a mass of 900 kg and receives a push of 20 N.
(a) What is the magnitude of the resulting acceleration? If the craft
starts from rest, (b) how far will it travel in 1 day and (c) how fast
will it then be moving?

•26 The tension at which a fishing line snaps is commonly called the
line’s “strength.”What minimum strength is needed for a line that is to
stop a salmon of weight 85 N in 11 cm if the fish is initially drifting at
2.8 m/s? Assume a constant deceleration.

•27 An electron with a speed of 1.2 � 107 m/s moves hori-
zontally into a region where a constant vertical force of 4.5
10�16 N acts on it. The mass of the electron is 9.11 � 10�31 kg.
Determine the vertical distance the electron is deflected during the
time it has moved 30 mm horizontally.

•28 A car that weighs 1.30 � 104 N is initially moving at
40 km/h when the brakes are applied and the car is brought to a
stop in 15 m. Assuming the force that stops the car is constant,
find (a) the magnitude of that force and (b) the time required for
the change in speed. If the initial speed is doubled, and the car ex-
periences the same force during the braking, by what factors are
(c) the stopping distance and (d) the stopping time multiplied?
(There could be a lesson here about the danger of driving at high
speeds.)

•29 A firefighter who weighs 712 N slides down a vertical pole
with an acceleration of 3.00 m/s2, directed downward.What are the
(a) magnitude and (b) direction (up or down) of the vertical force
on the firefighter from the pole and the (c) magnitude and (d) di-
rection of the vertical force on the pole from the firefighter?

•30 The high-speed winds around a tornado can drive pro-
jectiles into trees, building walls, and even metal traffic signs. In a
laboratory simulation, a standard wood toothpick was shot by
pneumatic gun into an oak branch.The toothpick’s mass was 0.13 g,
its speed before entering the branch was 220 m/s, and its penetra-
tion depth was 15 mm. If its speed was decreased at a uniform
rate, what was the magnitude of the force of the branch on the
toothpick?

••31 A block is projected up a frictionless inclined
plane with initial speed v0 3.50
m/s. The angle of incline is 

32.0�. (a) How far up the plane
does the block go? (b) How long
does it take to get there? (c) What is
its speed when it gets back to the
bottom?

••32 Figure 5-39 shows an overhead
view of a 0.0250 kg lemon half and
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Figure 5-38 Problem 24.
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Figure 5-39 Problem 32.

•19 A 500 kg rocket sled can be accelerated at a constant
rate from rest to 1600 km/h in 1.8 s. What is the magnitude of the
required net force?

•20 A car traveling at 53 km/h hits a bridge abutment. A passen-
ger in the car moves forward a distance of 65 cm (with respect to
the road) while being brought to rest by an inflated air bag. What
magnitude of force (assumed constant) acts on the passenger’s up-
per torso, which has a mass of 41 kg?

•21 A constant horizontal force pushes a 2.00 kg FedEx pack-
age across a frictionless floor on which an xy coordinate system has
been drawn. Figure 5-37 gives the package’s x and y velocity com-
ponents versus time t. What are the (a) magnitude and (b) direc-
tion of ?F

:

a

F
:

a

SSM

•22 A customer sits in an amusement park ride in which the
compartment is to be pulled downward in the negative direction of
a y axis with an acceleration magnitude of 1.24g, with g � 9.80 m/s2.
A 0.567 g coin rests on the customer’s knee. Once the motion be-
gins and in unit-vector notation, what is the coin’s acceleration rel-
ative to (a) the ground and (b) the customer? (c) How long does
the coin take to reach the compartment ceiling, 2.20 m above the
knee? In unit-vector notation, what are (d) the actual force on the
coin and (e) the apparent force according to the customer’s meas-
ure of the coin’s acceleration?

•23 Tarzan, who weighs 820 N, swings from a cliff at the end of a
20.0 m vine that hangs from a high tree limb and initially makes an
angle of 22.0� with the vertical. Assume that an x axis extends hori-
zontally away from the cliff edge and a y axis extends upward.
Immediately after Tarzan steps off the cliff, the tension in the vine
is 760 N. Just then, what are (a) the force on him from the vine in
unit-vector notation and the net force on him (b) in unit-vector no-
tation and as (c) a magnitude and (d) an angle relative to the
positive direction of the x axis? What are the (e) magnitude and
(f) angle of Tarzan’s acceleration just then?

vx (m/s)

vy (m/s)

t (s)
3210

5

10

t (s)
3210

–5

–10

0

Figure 5-37 Problem 21.



stant speed up a frictionless ramp
( 30.0�) by a horizontal force

. What are the magnitudes of (a) 
and (b) the force on the crate from
the ramp?

••35 The velocity of a 3.00 kg parti-
cle is given by � (8.00t + 3.00t2 )
m/s, with time t in seconds.At the instant the net force on the parti-
cle has a magnitude of 35.0 N, what are the direction (relative to
the positive direction of the x axis) of (a) the net force and (b) the
particle’s direction of travel?

••36 Holding on to a towrope moving parallel to a frictionless ski
slope, a 50 kg skier is pulled up the slope, which is at an angle of
8.0� with the horizontal.What is the magnitude Frope of the force on
the skier from the rope when (a) the magnitude v of the skier’s ve-
locity is constant at 2.0 m/s and (b) v � 2.0 m/s as v increases at a
rate of 0.10 m/s2?

••37 A 40 kg girl and an 8.4 kg sled are on the frictionless ice of a
frozen lake, 15 m apart but connected by a rope of negligible mass.
The girl exerts a horizontal 5.2 N force on the rope. What are the ac-
celeration magnitudes of (a) the sled and (b) the girl? (c) How far
from the girl’s initial position do they meet?

••38 A 40 kg skier skis directly down a frictionless slope angled
at 10� to the horizontal.Assume the skier moves in the negative di-
rection of an x axis along the slope. A wind force with component
Fx acts on the skier.What is Fx if the magnitude of the skier’s veloc-
ity is (a) constant, (b) increasing at a rate of 1.0 m/s2, and (c) in-
creasing at a rate of 2.0 m/s2?

••39 A sphere of mass 3.0 � 10�4 kg is suspended from
a cord. A steady horizontal breeze pushes the sphere so that the
cord makes a constant angle of 37� with the vertical. Find (a) the
push magnitude and (b) the tension in the cord.

••40 A dated box of dates, of mass 5.00 kg, is sent sliding up a
frictionless ramp at an angle of to the horizontal. Figure 5-41 gives,�
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m � 100 kg is pushed at con-
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has the constant velocity and (c) has the
varying velocity where t is time?

••33 An elevator cab and its load have a combined mass of 1600 kg.
Find the tension in the supporting cable when the cab, originally 
moving downward at 12 m/s, is brought to rest with constant accel-
eration in a distance of 42 m.

••34 In Fig. 5-40, a crate of mass

(13.0t î � 14.0t ĵ ) m/s2,v: �
v: � (13.0î � 14.0ĵ ) m/s,

has a magnitude of 7.00 N and is at 30.0�. In unit-vector no-
tation, what is the third force if the lemon half (a) is stationary, (b)

�2 �F
:

2

two of the three horizontal forces that act on it as it is on a frictionless
table. Force has a magnitude of 6.00 N and is at 30.0�. Force�1 �F

:

1

m

θ 

F

Figure 5-40 Problem 34.
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Figure 5-41 Problem 40.

as a function of time t, the component vx of the box’s velocity along an
x axis that extends directly up the ramp.What is the magnitude of the
normal force on the box from the ramp?

••41 Using a rope that will snap if the tension in it exceeds 387 N,
you need to lower a bundle of old roofing material weighing 449 N
from a point 6.1 m above the ground. Obviously if you hang the bun-
dle on the rope, it will snap. So, you allow the bundle to accelerate
downward. (a) What magnitude of the bundle’s acceleration will put
the rope on the verge of snapping? (b) At that acceleration, with
what speed would the bundle hit the ground?

••42 In earlier days, horses pulled barges down canals in the
manner shown in Fig. 5-42. Suppose the horse pulls on the rope
with a force of 7900 N at an angle of u � 18� to the direction of
motion of the barge, which is headed straight along the positive
direction of an x axis. The mass of the barge is 9500 kg, and the
magnitude of its acceleration is 0.12 m/s2. What are the (a) magni-
tude and (b) direction (relative to positive x) of the force on the
barge from the water?

θ 

Figure 5-42 Problem 42.

••43 In Fig. 5-43, a chain consisting of five
links, each of mass 0.100 kg, is lifted vertically
with constant acceleration of magnitude a � 2.50
m/s2. Find the magnitudes of (a) the force on link
1 from link 2, (b) the force on link 2 from link 3,
(c) the force on link 3 from link 4, and (d) the
force on link 4 from link 5. Then find the magni-
tudes of (e) the force on the top link from the
person lifting the chain and (f) the net force accel-
erating each link.

••44 A lamp hangs vertically from a cord in a de-
scending elevator that decelerates at 2.4 m/s2. (a)
If the tension in the cord is 89 N, what is the lamp’s
mass? (b) What is the cord’s tension when the ele-
vator ascends with an upward acceleration of 2.4 m/s2?

••45 An elevator cab that weighs 27.8 kN moves upward. What is
the tension in the cable if the cab’s speed is (a) increasing at a rate
of 1.22 m/s2 and (b) decreasing at a rate of 1.22 m/s2?

••46 An elevator cab is pulled upward by a cable. The cab and its
single occupant have a combined mass of 2000 kg.When that occu-
pant drops a coin, its acceleration relative to the cab is 8.00 m/s2

downward.What is the tension in the cable?

••47 The Zacchini family was renowned for their hu-
man-cannonball act in which a family member was shot from a
cannon using either elastic bands or compressed air. In one version
of the act, Emanuel Zacchini was shot over three Ferris wheels to
land in a net at the same height as the open end of the cannon and
at a range of 69 m. He was propelled inside the barrel for 5.2 m and
launched at an angle of 53�. If his mass was 85 kg and he underwent
constant acceleration inside the barrel, what was the magnitude of
the force propelling him? (Hint: Treat the launch as though it were
along a ramp at 53�. Neglect air drag.)

F
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Figure 5-43
Problem 43.
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Figure 5-51 Problem 56.

••48 In Fig. 5-44, elevator cabs A and B are con-
nected by a short cable and can be pulled upward or
lowered by the cable above cab A. Cab A has mass
1700 kg; cab B has mass 1300 kg.A 12.0 kg box of cat-
nip lies on the floor of cab A.The tension in the cable
connecting the cabs is 1.91 � 104 N. What is the mag-
nitude of the normal force on the box from the floor?

••49 In Fig. 5-45, a block of mass m � 5.00 kg is
pulled along a horizontal frictionless floor by a cord
that exerts a force of magnitude F � 12.0 N at an
angle u � 25.0�. (a) What is the magnitude of the
block’s acceleration? (b) The force magnitude F is
slowly increased. What is its value just before the
block is lifted (completely) off the floor? (c) What is
the magnitude of the block’s acceleration just before it is lifted
(completely) off the floor?

••54 Figure 5-49 shows four penguins that are being playfully
pulled along very slippery (frictionless) ice by a curator. The masses
of three penguins and the tension in two of the cords are m1 � 12 kg,
m3 � 15 kg, m4 � 20 kg, T2 � 111 N, and T4 � 222 N. Find the pen-
guin mass m2 that is not given.

••50 In Fig. 5-46, three ballot
boxes are connected by cords, one
of which wraps over a pulley having
negligible friction on its axle and
negligible mass. The three masses
are mA � 30.0 kg, mB � 40.0 kg,
and mC � 10.0 kg.When the assem-
bly is released from rest, (a) what is the tension in the cord con-
necting B and C, and (b) how far does A move in the first 0.250 s
(assuming it does not reach the pulley)?

••51 Figure 5-47 shows two blocks connected by
a cord (of negligible mass) that passes over a fric-
tionless pulley (also of negligible mass). The
arrangement is known as Atwood’s machine. One
block has mass m1 � 1.30 kg; the other has mass m2 �
2.80 kg.What are (a) the magnitude of the blocks’ ac-
celeration and (b) the tension in the cord?

••52 An 85 kg man lowers himself to the ground
from a height of 10.0 m by holding onto a rope that
runs over a frictionless pulley to a 65 kg sandbag.
With what speed does the man hit the ground if he
started from rest?

••53 In Fig. 5-48, three connected blocks are
pulled to the right on a horizontal frictionless table
by a force of magnitude T3 � 65.0 N. If m1 � 12.0 kg,
m2 � 24.0 kg, and m3 � 31.0 kg, calculate (a) the magnitude of the
system’s acceleration, (b) the tension T1, and (c) the tension T2.

A

B

Figure 5-44
Problem 48.

Fθ m

Figure 5-45
Problems 49 and 60.
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C

Figure 5-46 Problem 50.
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Figure 5-48 Problem 53.
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Figure 5-47
Problems 51 

and 65.
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Figure 5-49 Problem 54.

••55 Two blocks are in
contact on a frictionless table. A horizon-
tal force is applied to the larger block, as
shown in Fig. 5-50. (a) If m1 � 2.3 kg,
m2 1.2 kg, and F � 3.2 N, find the mag-
nitude of the force between the two
blocks. (b) Show that if a force of the same
magnitude F is applied to the smaller
block but in the opposite direction, the magnitude of the force be-
tween the blocks is 2.1 N, which is not the same value calculated in
(a). (c) Explain the difference.

••56 In Fig. 5-51a, a constant horizontal force is applied to
block A, which pushes against block B with a 20.0 N force directed
horizontally to the right. In Fig. 5-51b, the same force is applied
to block B; now block A pushes on block B with a 10.0 N force
directed horizontally to the left. The blocks have a combined mass
of 12.0 kg. What are the magnitudes of (a) their acceleration in
Fig. 5-51a and (b) force ?F
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a

F
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a
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Figure 5-50
Problem 55.

••57 A block of mass m1 � 3.70 kg on a frictionless plane in-ILW

clined at angle 30.0� is connected by a cord over a massless,
frictionless pulley to a second block of mass m2 � 2.30 kg (Fig.
5-52). What are (a) the magnitude of the acceleration of each
block, (b) the direction of the acceleration of the hanging block,
and (c) the tension in the cord?

� �

m2

θ 

m1

Figure 5-52 Problem 57.

••58 Figure 5-53 shows a man sitting in a bosun’s chair that dan-
gles from a massless rope, which runs over a massless, frictionless
pulley and back down to the man’s hand. The combined mass of
man and chair is 95.0 kg. With what force magnitude must the man
pull on the rope if he is to rise (a) with a constant velocity and
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(b) with an upward acceleration of
1.30 m/s2? (Hint: A free-body dia-
gram can really help.) If the rope
on the right extends to the ground
and is pulled by a co-worker, with
what force magnitude must the co-
worker pull for the man to rise (c)
with a constant velocity and (d)
with an upward acceleration of
1.30 m/s2? What is the magnitude
of the force on the ceiling from the
pulley system in (e) part a, (f ) part
b, (g) part c, and (h) part d?

••59 A 10 kg monkey climbs
up a massless rope that runs over a
frictionless tree limb and back
down to a 15 kg package on the
ground (Fig. 5-54). (a) What is the
magnitude of the least acceleration
the monkey must have if it is to lift
the package off the ground? If, after
the package has been lifted, the
monkey stops its climb and holds
onto the rope, what are the (b)
magnitude and (c) direction of the
monkey’s acceleration and (d) the
tension in the rope?

••60 Figure 5-45 shows a 5.00 kg
block being pulled along a friction-
less floor by a cord that applies a
force of constant magnitude 20.0 N
but with an angle u(t) that varies
with time. When angle u � 25.0�, at
what rate is the acceleration of the
block changing if (a) u(t) � 
(2.00 � 10�2 deg/s)t and (b) u(t) � �(2.00 � 10�2 deg/s)t? (Hint:
The angle should be in radians.)

••61 A hot-air balloon of mass M is descending vertically
with downward acceleration of magnitude a. How much mass (ballast)
must be thrown out to give the balloon an upward acceleration of mag-
nitude a? Assume that the upward force from the air (the lift) does not
change because of the decrease in mass.

•••62 In shot putting, many athletes elect to launch the shot

ILWSSM

SSM

the axis, with a speed of 3.0 m/s.What are its (a) speed and (b) direc-
tion of travel at t � 11 s?

Figure 5-53 Problem 58.

Bananas

Figure 5-54 Problem 59.
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Figure 5-55 Problem 63.

at an angle that is smaller than the theoretical one (about 42�) at
which the distance of a projected ball at the same speed and
height is greatest. One reason has to do with the speed the athlete
can give the shot during the acceleration phase of the throw.
Assume that a 7.260 kg shot is accelerated along a straight path of
length 1.650 m by a constant applied force of magnitude 380.0 N,
starting with an initial speed of 2.500 m/s (due to the athlete’s pre-
liminary motion). What is the shot’s speed at the end of the accel-
eration phase if the angle between the path and the horizontal is
(a) 30.00� and (b) 42.00�? (Hint: Treat the motion as though it
were along a ramp at the given angle.) (c) By what percent is the
launch speed decreased if the athlete increases the angle from
30.00� to 42.00�?

•••63 Figure 5-55 gives, as a function of time t, the force compo-
nent Fx that acts on a 3.00 kg ice block that can move only along
the x axis. At t � 0, the block is moving in the positive direction of

•••64 Figure 5-56 shows a box of mass m2 � 1.0 kg on a fric-

θ 

F

m2

m1

Figure 5-56 Problem 64.

•••65 Figure 5-47 shows Atwood’s machine, in which two con-
tainers are connected by a cord (of negligible mass) passing over a
frictionless pulley (also of negligible mass).At time t � 0, container
1 has mass 1.30 kg and container 2 has mass 2.80 kg, but container 1
is losing mass (through a leak) at the constant rate of 0.200 kg/s. At
what rate is the acceleration magnitude of the containers changing
at (a) t � 0 and (b) t � 3.00 s? (c) When does the acceleration reach
its maximum value?

•••66 Figure 5-57 shows a section of a cable-car system. The
maximum permissible mass of each car with occupants is 2800 kg.
The cars, riding on a support cable, are pulled by a second cable
attached to the support tower on each car. Assume that the cables

Support cable 
Pull cable 

θ 

Figure 5-57 Problem 66.

tionless plane inclined at angle u � 30�. It is connected by a cord of
negligible mass to a box of mass m1 � 3.0 kg on a horizontal fric-
tionless surface. The pulley is frictionless and massless. (a) If the
magnitude of horizontal force is 2.3 N, what is the tension in the
connecting cord? (b) What is the largest value the magnitude of 
may have without the cord becoming slack?

F
:

F
:



antioxidants (m1 � 1.0 kg) on a fric-
tionless inclined surface is con-
nected to a tin of corned beef (m2

2.0 kg). The pulley is massless and
frictionless. An upward force of
magnitude F � 6.0 N acts on the
corned beef tin, which has a down-
ward acceleration of 5.5 m/s2. What
are (a) the tension in the connecting
cord and (b) angle b?

74 The only two forces acting on a
body have magnitudes of 20 N and
35 N and directions that differ by
80�. The resulting acceleration has a
magnitude of 20 m/s2. What is the
mass of the body?

75 Figure 5-62 is an overhead
view of a 12 kg tire that is to be
pulled by three horizontal ropes.
One rope’s force (F1 � 50 N) is in-
dicated. The forces from the other
ropes are to be oriented such that
the tire’s acceleration magnitude a is
least. What is that least a if (a) F2 �
30 N, F3 � 20 N; (b) F2 � 30 N, F3 �
10 N; and (c) F2 � F3 � 30 N?

76 A block of mass M is pulled
along a horizontal frictionless sur-
face by a rope of mass m, as shown
in Fig. 5-63. A horizontal force 
acts on one end of the rope.
(a) Show that the rope must sag, even if only by an imperceptible
amount. Then, assuming that the sag is negligible, find (b) the ac-
celeration of rope and block, (c) the force on the block from the
rope, and (d) the tension in the rope at its midpoint.

77 A worker drags a crate across a factory floor by pulling
on a rope tied to the crate. The worker exerts a force of magni-
tude F � 450 N on the rope, which is inclined at an upward angle
u � 38� to the horizontal, and the floor exerts a horizontal force
of magnitude f � 125 N that opposes the motion. Calculate the
magnitude of the acceleration of the crate if (a) its mass is 310 kg
and (b) its weight is 310 N.

78 In Fig. 5-64, a force of mag-
nitude 12 N is applied to a FedEx
box of mass m2 � 1.0 kg. The force
is directed up a plane tilted by u �
37�. The box is connected by a cord
to a UPS box of mass m1 � 3.0 kg
on the floor. The floor, plane, and
pulley are frictionless, and the
masses of the pulley and cord are negligible. What is the tension in
the cord?

79 A certain particle has a weight of 22 N at a point where 
g � 9.8 m/s2. What are its (a) weight and (b) mass at a point where
g � 4.9 m/s2? What are its (c) weight and (d) mass if it is moved to
a point in space where g � 0?

80 An 80 kg person is parachuting and experiencing a downward
acceleration of 2.5 m/s2. The mass of the parachute is 5.0 kg. (a)

F
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Figure 5-63 Problem 76.
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Figure 5-64 Problem 78.

are taut and inclined at angle u � 35�. What is the difference in
tension between adjacent sections of pull cable if the cars are at
the maximum permissible mass and are being accelerated up the
incline at 0.81 m/s2?

•••67 Figure 5-58 shows three
blocks attached by cords that loop
over frictionless pulleys. Block B
lies on a frictionless table; the
masses are mA � 6.00 kg, mB � 8.00
kg, and mC � 10.0 kg. When the
blocks are released, what is the
tension in the cord at the right?

•••68 A shot putter launches a 7.260 kg shot by pushing it
along a straight line of length 1.650 m and at an angle of 34.10°
from the horizontal, accelerating the shot to the launch speed
from its initial speed of 2.500 m/s (which is due to the athlete’s
preliminary motion).The shot leaves the hand at a height of 2.110 m
and at an angle of 34.10�, and it lands at a horizontal distance of
15.90 m. What is the magnitude of the athlete’s average force on
the shot during the acceleration phase? (Hint: Treat the motion
during the acceleration phase as though it were along a ramp at
the given angle.)

Additional Problems
69 In Fig. 5-59, 4.0 kg block A and 6.0 kg block B are connected by
a string of negligible mass. Force acts on block A;
force acts on block B.What is the tension in the string?F

:

B � (24 N)î
F
:

A � (12 N)î

73 In Fig. 5-61, a tin ofSSM

70 An 80 kg man drops to a concrete patio from a window
0.50 m above the patio. He neglects to bend his knees on landing, tak-
ing 2.0 cm to stop. (a) What is his average acceleration from when his
feet first touch the patio to when he stops? (b) What is the magnitude
of the average stopping force exerted on him by the patio?

71 Figure 5-60 shows a box of dirty money (mass m1 3.0 kg)�SSM
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Figure 5-58 Problem 67.
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Figure 5-59 Problem 69.
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Figure 5-60 Problem 71.
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Figure 5-61 Problem 73.

72 Three forces act on a particle that moves with unchanging ve-
locity Two of the forces are 

and . What is
the third force?

(8 N)ĵ � (�2 N)k̂F2
:

� (�5 N)î �(3 N)ĵ � (�2 N)k̂
F1
:

� (2 N)î �v: � (2 m/s)î � (7 m/s)ĵ.

x
F1

Figure 5-62 Problem 75.

on a frictionless plane inclined at angle 30�. The box is con-
nected via a cord of negligible mass to a box of laundered money
(mass m2 � 2.0 kg) on a frictionless plane inclined at angle u2 � 60�.
The pulley is frictionless and has negligible mass. What is the ten-
sion in the cord?

�1 �
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What is the upward force on the open parachute from the air? (b)
What is the downward force on the parachute from the person?

81 A spaceship lifts off vertically from the Moon, where g �
1.6 m/s2. If the ship has an upward acceleration of 1.0 m/s2 as it lifts
off, what is the magnitude of the force exerted by the ship on its pi-
lot, who weighs 735 N on Earth?

82 In the overhead view of Fig.
5-65, five forces pull on a box of
mass m � 4.0 kg. The force magni-
tudes are F1 � 11 N, F2 � 17 N,
F3 � 3.0 N, F4 � 14 N, and F5 � 5.0 N,
and angle u4 is 30�. Find the box’s
acceleration (a) in unit-vector nota-
tion and as (b) a magnitude and
(c) an angle relative to the positive
direction of the x axis.

83 A certain force gives an
object of mass m1 an acceleration
of 12.0 m/s2 and an object of mass m2 an acceleration of 3.30
m/s2. What acceleration would the force give to an object of mass
(a) m2 � m1 and (b) m2 � m1?

84 You pull a short refrigerator with a constant force across a
greased (frictionless) floor, either with horizontal (case 1) or with

tilted upward at an angle u (case 2). (a) What is the ratio of the re-
frigerator’s speed in case 2 to its speed in case 1 if you pull for a cer-
tain time t? (b) What is this ratio if you pull for a certain distance d?

85 A 52 kg circus performer is to slide down a rope that will
break if the tension exceeds 425 N. (a) What happens if the per-
former hangs stationary on the rope? (b) At what magnitude of ac-
celeration does the performer just avoid breaking the rope?

86 Compute the weight of a 75 kg space ranger (a) on Earth,
(b) on Mars, where g � 3.7 m/s2, and (c) in interplanetary space,
where g � 0. (d) What is the ranger’s mass at each location?

87 An object is hung from a spring balance attached to the ceil-
ing of an elevator cab. The balance reads 65 N when the cab is
standing still. What is the reading when the cab is moving upward
(a) with a constant speed of 7.6 m/s and (b) with a speed of 7.6 m/s
while decelerating at a rate of 2.4 m/s2?

88 Imagine a landing craft approaching the surface of Callisto,
one of Jupiter’s moons. If the engine provides an upward force
(thrust) of 3260 N, the craft descends at constant speed; if the en-
gine provides only 2200 N, the craft accelerates downward at
0.39 m/s2. (a) What is the weight of the landing craft in the vicinity
of Callisto’s surface? (b) What is the mass of the craft? (c) What is
the magnitude of the free-fall acceleration near the surface of
Callisto?

89 A 1400 kg jet engine is fastened to the fuselage of a passenger
jet by just three bolts (this is the usual practice). Assume that each
bolt supports one-third of the load. (a) Calculate the force on each
bolt as the plane waits in line for clearance to take off. (b) During
flight, the plane encounters turbulence, which suddenly imparts an
upward vertical acceleration of 2.6 m/s2 to the plane. Calculate the
force on each bolt now.

90 An interstellar ship has a mass of 1.20 � 106 kg and is initially at
rest relative to a star system. (a) What constant acceleration is needed
to bring the ship up to a speed of 0.10c (where c is the speed of light,
3.0 � 108 m/s) relative to the star system in 3.0 days? (b) What is that
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acceleration in g units? (c) What force is required for the accelera-
tion? (d) If the engines are shut down when 0.10c is reached (the
speed then remains constant), how long does the ship take (start to
finish) to journey 5.0 light-months, the distance that light travels in
5.0 months?

91 A motorcycle and 60.0 kg rider accelerate at 3.0 m/s2 upSSM

x
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F5
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4θ 

Figure 5-65 Problem 82.

94 For sport, a 12 kg armadillo runs onto a large pond of level,
frictionless ice. The armadillo’s initial velocity is 5.0 m/s along the
positive direction of an x axis. Take its initial position on the ice as
being the origin. It slips over the ice while being pushed by a wind
with a force of 17 N in the positive direction of the y axis. In unit-
vector notation, what are the animal’s (a) velocity and (b) position
vector when it has slid for 3.0 s?

95 Suppose that in Fig. 5-12, the masses of the blocks are 2.0 kg
and 4.0 kg. (a) Which mass should the hanging block have if the
magnitude of the acceleration is to be as large as possible? What
then are (b) the magnitude of the acceleration and (c) the tension
in the cord?

96 A nucleus that captures a stray neutron must bring the neu-
tron to a stop within the diameter of the nucleus by means of the
strong force. That force, which “glues” the nucleus together, is ap-
proximately zero outside the nucleus. Suppose that a stray neutron
with an initial speed of 1.4 � 107 m/s is just barely captured by a
nucleus with diameter d � 1.0 � 10�14 m. Assuming the strong
force on the neutron is constant, find the magnitude of that force.
The neutron’s mass is 1.67 � 10�27 kg.

97 If the 1 kg standard body is accelerated by only 
, then what

is (a) in unit-vector notation and as (b) a magnitude and
(c) an angle relative to the positive x direction? What are the (d)
magnitude and (e) angle of ?a:
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(3.0 N)î � (4.0 N)ĵ  and  F
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2 � (�2.0 N)î � (�6.0 N)ĵ
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(a) (b)

m1

m2

m3

m5

Figure 5-66 Problem 93.

a ramp inclined 10� above the horizontal. What are the magnitudes
of (a) the net force on the rider and (b) the force on the rider from
the motorcycle?

92 Compute the initial upward acceleration of a rocket of mass
1.3 � 104 kg if the initial upward force produced by its engine (the
thrust) is 2.6 � 105 N. Do not neglect the gravitational force on the
rocket.

93 Figure 5-66a shows a mobile hanging from a ceiling; it
consists of two metal pieces (m1 3.5 kg and m2 4.5 kg) that are
strung together by cords of negligible mass. What is the tension in
(a) the bottom cord and (b) the top cord? Figure 5-66b shows a
mobile consisting of three metal pieces.Two of the masses are m3 �
4.8 kg and m5 � 5.5 kg.The tension in the top cord is 199 N.What is
the tension in (c) the lowest cord and (d) the middle cord?

��
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What Is Physics?
In this chapter we focus on the physics of three common types of force: frictional
force, drag force, and centripetal force. An engineer preparing a car for the
Indianapolis 500 must consider all three types. Frictional forces acting on the tires
are crucial to the car’s acceleration out of the pit and out of a curve (if the car hits
an oil slick, the friction is lost and so is the car). Drag forces acting on the car
from the passing air must be minimized or else the car will consume too much
fuel and have to pit too early (even one 14 s pit stop can cost a driver the race).
Centripetal forces are crucial in the turns (if there is insufficient centripetal force,
the car slides into the wall).We start our discussion with frictional forces.

Friction
Frictional forces are unavoidable in our daily lives. If we were not able to coun-
teract them, they would stop every moving object and bring to a halt every
rotating shaft. About 20% of the gasoline used in an automobile is needed to
counteract friction in the engine and in the drive train. On the other hand, if fric-
tion were totally absent, we could not get an automobile to go anywhere, and we
could not walk or ride a bicycle. We could not hold a pencil, and, if we could, it
would not write. Nails and screws would be useless, woven cloth would fall apart,
and knots would untie.

C H A P T E R  6

Force and Motion—II

6-1 FRICTION

After reading this module, you should be able to . . .

6.01 Distinguish between friction in a static situation and a 
kinetic situation.

6.02 Determine direction and magnitude of a frictional force.

6.03 For objects on horizontal, vertical, or inclined planes in
situations involving friction, draw free-body diagrams and
apply Newton’s second law.

● When a force tends to slide a body along a surface, a fric-
tional force from the surface acts on the body. The frictional
force is parallel to the surface and directed so as to oppose the
sliding. It is due to bonding between the body and the surface.

If the body does not slide, the frictional force is a static
frictional force . If there is sliding, the frictional force is a 
kinetic frictional force .

● If a body does not move, the static frictional force and
the component of parallel to the surface are equal in magni-
tude, and is directed opposite that component. If the com-
ponent increases, fs also increases.
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● The magnitude of has a maximum value s,max given by

fs,max � msFN,

where ms is the coefficient of static friction and FN is the mag-
nitude of the normal force. If the component of parallel to
the surface exceeds fs,max, the body slides on the surface.

● If the body begins to slide on the surface, the magnitude of the
frictional force rapidly decreases to a constant value given by

fk � mkFN,

where mk is the coefficient of kinetic friction.
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(a)

(b)

(c)

(d)

fs

fs

fs

Fg

Fg

Fg

Fg

F

F

F

FN

FN

FN

FNThere is no attempt
at sliding. Thus,
no friction and
no motion.

Frictional force = 0

Force F  attempts
sliding but is balanced
by the frictional force.
No motion.

Force F  is now 
stronger but is still
balanced by the
frictional force.
No motion.

Force F  is now even 
stronger but is still
balanced by the
frictional force.
No motion.

Frictional force = F

Frictional force = F

Frictional force = F

Figure 6-1 (a) The forces on a
stationary block. (b–d) An external
force , applied to the block, is
balanced by a static frictional force

. As F is increased, fs also increases,
until fs reaches a certain maximum
value. (Figure continues)
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Three Experiments. Here we deal with the frictional forces that exist be-
tween dry solid surfaces, either stationary relative to each other or moving across
each other at slow speeds. Consider three simple thought experiments:

1. Send a book sliding across a long horizontal counter. As expected, the book
slows and then stops. This means the book must have an acceleration parallel
to the counter surface, in the direction opposite the book’s velocity. From
Newton’s second law, then, a force must act on the book parallel to the counter
surface, in the direction opposite its velocity.That force is a frictional force.

2. Push horizontally on the book to make it travel at constant velocity along the
counter. Can the force from you be the only horizontal force on the book?
No, because then the book would accelerate. From Newton’s second law, there
must be a second force, directed opposite your force but with the same magni-
tude, so that the two forces balance. That second force is a frictional force,
directed parallel to the counter.

3. Push horizontally on a heavy crate. The crate does not move. From Newton’s
second law, a second force must also be acting on the crate to counteract your
force. Moreover, this second force must be directed opposite your force and
have the same magnitude as your force, so that the two forces balance. That
second force is a frictional force. Push even harder. The crate still does not
move. Apparently the frictional force can change in magnitude so that the two
forces still balance. Now push with all your strength. The crate begins to slide.
Evidently, there is a maximum magnitude of the frictional force. When you
exceed that maximum magnitude, the crate slides.

Two Types of Friction. Figure 6-1 shows a similar situation. In Fig. 6-1a, a block
rests on a tabletop, with the gravitational force balanced by a normal force F

:
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In Fig. 6-1b, you exert a force on the block, attempting to pull it to the left. In re-
sponse, a frictional force is directed to the right, exactly balancing your force.
The force is called the static frictional force. The block does not move.f
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126 CHAPTER 6 FORCE AND MOTION—II

Figures 6-1c and 6-1d show that as you increase the magnitude of your
applied force, the magnitude of the static frictional force also increases and
the block remains at rest. When the applied force reaches a certain magnitude,
however, the block “breaks away” from its intimate contact with the tabletop and
accelerates leftward (Fig. 6-1e). The frictional force that then opposes the motion
is called the kinetic frictional force .

Usually, the magnitude of the kinetic frictional force, which acts when there is
motion, is less than the maximum magnitude of the static frictional force, which
acts when there is no motion. Thus, if you wish the block to move across the sur-
face with a constant speed, you must usually decrease the magnitude of the
applied force once the block begins to move, as in Fig. 6-1f. As an example,
Fig. 6-1g shows the results of an experiment in which the force on a block was
slowly increased until breakaway occurred. Note the reduced force needed to
keep the block moving at constant speed after breakaway.

Microscopic View. A frictional force is, in essence, the vector sum of many
forces acting between the surface atoms of one body and those of another body. If
two highly polished and carefully cleaned metal surfaces are brought together in
a very good vacuum (to keep them clean), they cannot be made to slide over each
other. Because the surfaces are so smooth, many atoms of one surface contact
many atoms of the other surface, and the surfaces cold-weld together instantly,
forming a single piece of metal. If a machinist’s specially polished gage blocks are
brought together in air, there is less atom-to-atom contact, but the blocks stick
firmly to each other and can be separated only by means of a wrenching motion.
Usually, however, this much atom-to-atom contact is not possible. Even a highly
polished metal surface is far from being flat on the atomic scale. Moreover, the
surfaces of everyday objects have layers of oxides and other contaminants that
reduce cold-welding.

When two ordinary surfaces are placed together, only the high points touch
each other. (It is like having the Alps of Switzerland turned over and placed down
on the Alps of Austria.) The actual microscopic area of contact is much less than
the apparent macroscopic contact area, perhaps by a factor of 104. Nonetheless,
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Finally, the applied force
has overwhelmed the
static frictional force.
Block slides and
accelerates.

Static frictional force
can only match growing
applied force.

Weak kinetic
frictional force

Same weak kinetic
frictional force

Kinetic frictional force
has only one value
(no matching).

To maintain the speed,
weaken force F  to match
the weak frictional force.

Figure 6-1 (Continued)  (e) Once fs reaches
its maximum value, the block “breaks
away,” accelerating suddenly in the direc-
tion of . (f ) If the block is now to move
with constant velocity, F must be reduced
from the maximum value it had just
before the block broke away. (g) Some
experimental results for the sequence
(a) through (f ). In WileyPLUS, this
figure is available as an animation with
voiceover.

F
:



many contact points do cold-weld together. These welds produce static friction
when an applied force attempts to slide the surfaces relative to each other.

If the applied force is great enough to pull one surface across the other, there
is first a tearing of welds (at breakaway) and then a continuous re-forming and
tearing of welds as movement occurs and chance contacts are made (Fig. 6-2).
The kinetic frictional force that opposes the motion is the vector sum of the
forces at those many chance contacts.

If the two surfaces are pressed together harder, many more points cold-weld.
Now getting the surfaces to slide relative to each other requires a greater applied
force: The static frictional force has a greater maximum value. Once the sur-
faces are sliding, there are many more points of momentary cold-welding, so the
kinetic frictional force also has a greater magnitude.

Often, the sliding motion of one surface over another is “jerky” because the two
surfaces alternately stick together and then slip. Such repetitive stick-and-slip can pro-
duce squeaking or squealing, as when tires skid on dry pavement, fingernails scratch
along a chalkboard, or a rusty hinge is opened. It can also produce beautiful and capti-
vating sounds,as in music when a bow is drawn properly across a violin string.

Properties of Friction
Experiment shows that when a dry and unlubricated body presses against a surface
in the same condition and a force attempts to slide the body along the surface,
the resulting frictional force has three properties:

Property 1. If the body does not move, then the static frictional force and the
component of that is parallel to the surface balance each other. They are
equal in magnitude, and is directed opposite that component of .

Property 2. The magnitude of has a maximum value fs,max that is given by

fs,max � msFN, (6-1)

where ms is the coefficient of static friction and FN is the magnitude of the
normal force on the body from the surface. If the magnitude of the compo-
nent of that is parallel to the surface exceeds fs,max, then the body begins to
slide along the surface.

Property 3. If the body begins to slide along the surface, the magnitude of the
frictional force rapidly decreases to a value fk given by

fk � mkFN, (6-2)

where mk is the coefficient of kinetic friction. Thereafter, during the sliding, a 
kinetic frictional force with magnitude given by Eq. 6-2 opposes the motion.

The magnitude FN of the normal force appears in properties 2 and 3 as a
measure of how firmly the body presses against the surface. If the body presses
harder, then, by Newton’s third law, FN is greater. Properties 1 and 2 are worded
in terms of a single applied force , but they also hold for the net force of several
applied forces acting on the body. Equations 6-1 and 6-2 are not vector equations;
the direction of or is always parallel to the surface and opposed to the at-
tempted sliding, and the normal force is perpendicular to the surface.

The coefficients ms and mk are dimensionless and must be determined experi-
mentally. Their values depend on certain properties of both the body and the
surface; hence, they are usually referred to with the preposition “between,” as in
“the value of ms between an egg and a Teflon-coated skillet is 0.04, but that between
rock-climbing shoes and rock is as much as 1.2.” We assume that the value of mk

does not depend on the speed at which the body slides along the surface.
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1276-1 FRICTION

Figure 6-2 The mechanism of sliding 
friction. (a) The upper surface is sliding to
the right over the lower surface in this
enlarged view. (b) A detail, showing two
spots where cold-welding has occurred.
Force is required to break the welds and
maintain the motion.

(a)

(b)
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Checkpoint 1
A block lies on a floor. (a) What is the magnitude of the frictional force on it from the
floor? (b) If a horizontal force of 5 N is now applied to the block, but the block does
not move, what is the magnitude of the frictional force on it? (c) If the maximum
value fs,max of the static frictional force on the block is 10 N, will the block move if the
magnitude of the horizontally applied force is 8 N? (d) If it is 12 N? (e) What is the
magnitude of the frictional force in part (c)?

ond law as

FN � mg � F sin u � m(0), (6-4)

which gives us

FN � mg � F sin u. (6-5)

Now we can evaluate fs,max � msFN:

fs,max � ms (mg � F sin u)

� (0.700)((8.00 kg)(9.8 m/s2) � (12.0 N)(sin 30�))

� 59.08 N. (6-6)

Because the magnitude Fx (� 10.39 N) of the force com-
ponent attempting to slide the block is less than fs,max

(� 59.08 N), the block remains stationary. That means that
the magnitude fs of the frictional force matches Fx. From
Fig. 6-3d, we can write Newton’s second law for x compo-
nents as

Fx � fs � m(0), (6-7)

and thus fs � Fx � 10.39 N 10.4 N. (Answer)�

Sample Problem 6.01 Angled force applied to an initially stationary block

This sample problem involves a tilted applied force,
which requires that we work with components to find a
frictional force. The main challenge is to sort out all the
components. Figure 6-3a shows a force of magnitude F �
12.0 N applied to an 8.00 kg block at a downward angle of 
u � 30.0�. The coefficient of static friction between block
and floor is ms � 0.700; the coefficient of kinetic friction is
mk � 0.400. Does the block begin to slide or does it re-
main stationary? What is the magnitude of the frictional
force on the block?

KEY IDEAS

(1) When the object is stationary on a surface, the static fric-
tional force balances the force component that is attempting
to slide the object along the surface. (2) The maximum possi-
ble magnitude of that force is given by Eq. 6-1 ( fs,max � msFN).
(3) If the component of the applied force along the surface
exceeds this limit on the static friction, the block begins to
slide. (4) If the object slides, the kinetic frictional force is
given by Eq. 6-2 ( fk � mkFN).

Calculations: To see if the block slides (and thus to calcu-
late the magnitude of the frictional force), we must com-
pare the applied force component Fx with the maximum
magnitude fs,max that the static friction can have. From the
triangle of components and full force shown in Fig. 6-3b,
we see that

Fx � F cos u

� (12.0 N) cos 30� � 10.39 N. (6-3)

From Eq. 6-1, we know that fs,max � msFN, but we need the
magnitude FN of the normal force to evaluate fs,max. Because
the normal force is vertical, we need to write Newton’s sec-
ond law (Fnet,y � may) for the vertical force components act-
ing on the block, as displayed in Fig. 6-3c. The gravitational
force with magnitude mg acts downward. The applied force
has a downward component Fy � F sin u. And the vertical
acceleration ay is just zero. Thus, we can write Newton’s sec-

F

y

x u

(a)

(c)

Fg

Fy

FN

Block

Block

u

F
Fy

Fx

(b)

fs Fx

(d)

Figure 6-3 (a) A force is applied to an initially stationary block. (b)
The components of the applied force. (c) The vertical force com-
ponents. (d) The horizontal force components.

Additional examples, video, and practice available at WileyPLUS
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Inserting the initial speed v0 � 10.0 m/s, the final speed v � 0,
and the coefficient of kinetic friction mk � 0.60, we find that
the car’s stopping distance is

x � x0 � 8.50 m 8.5 m. (Answer)

(b) What is the stopping distance if the road is covered with
ice with mk � 0.10?

Calculation: Our solution is perfectly fine through Eq. 6-12
but now we substitute this new mk, finding

x � x0 � 51 m. (Answer)

Thus, a much longer clear path would be needed to avoid
the car hitting something along the way.

(c) Now let’s have the car sliding down an icy hill with an in-
clination of u � 5.00� (a mild incline, nothing like the hills of
San Francisco). The free-body diagram shown in Fig. 6-4c is
like the ramp in Sample Problem 5.04 except, to be consis-
tent with Fig. 6-4b, the positive direction of the x axis is
down the ramp.What now is the stopping distance?

Calculations: Switching from Fig. 6-4b to c involves two ma-
jor changes. (1) Now a component of the gravitational force is
along the tilted x axis, pulling the car down the hill. From
Sample Problem 5.04 and Fig. 5-15, that down-the-hill com-
ponent is mg sin u, which is in the positive direction of the x
axis in Fig. 6-4c. (2) The normal force (still perpendicular to
the road) now balances only a component of the gravitational

�

Sample Problem 6.02 Sliding to a stop on icy roads, horizontal and inclined

Some of the funniest videos on the web involve motorists
sliding uncontrollably on icy roads. Here let’s compare the
typical stopping distances for a car sliding to a stop from an
initial speed of 10.0 m/s on a dry horizontal road, an icy hori-
zontal road, and (everyone’s favorite) an icy hill.

(a) How far does the car take to slide to a stop on a hori-
zontal road (Fig. 6-4a) if the coefficient of kinetic friction is
mk � 0.60, which is typical of regular tires on dry pavement?
Let’s neglect any effect of the air on the car, assume that
the wheels lock up and the tires slide, and extend an x axis
in the car’s direction of motion.

KEY IDEAS

(1) The car accelerates (its speed decreases) because a hori-
zontal frictional force acts against the motion, in the negative
direction of the x axis. (2) The frictional force is a kinetic fric-
tional force with a magnitude given by Eq. 6-2 ( fk � mkFN), in
which FN is the magnitude of the normal force on the car from
the road. (3) We can relate the frictional force to the resulting
acceleration by writing Newton’s second law (Fnet,x � max) for
motion along the road.

Calculations: Figure 6-4b shows the free-body diagram for the
car.The normal force is upward, the gravitational force is down-
ward, and the frictional force is horizontal. Because the fric-
tional force is the only force with an x component, Newton’s
second law written for motion along the x axis becomes

�fk � max. (6-8)

Substituting fk � mkFN gives us

�mkFN � max. (6-9)

From Fig. 6-4b we see that the upward normal force bal-
ances the downward gravitational force, so in Eq. 6-9 let’s
replace magnitude FN with magnitude mg. Then we can can-
cel m (the stopping distance is thus independent of the car’s
mass—the car can be heavy or light, it does not matter).
Solving for ax we find

ax � �mkg. (6-10)

Because this acceleration is constant, we can use the 
constant-acceleration equations of Table 2-1. The easiest
choice for finding the sliding distance x � x0 is Eq. 2-16

which gives us

(6-11)

Substituting from Eq. 6-10, we then have

(6-12)x � x0 �
v2 � v2

0

�2mkg
.

x � x0 �
v2 � v2

0

2ax
.

(v2 � v2
0 � 2a(x � x0)),

x – x0

v0

= 0.60

(a)

μ

v = 0

fk

Fg

FN

Car
x

y

x

(b)

y

This is a free-body
diagram of the
forces on the car.

Frictional force
opposes the sliding.

Normal force
supports the car.

Gravitational force
pulls downward.

fk

FN

Fg

mg cos

(c)

u u u

mg sinu

Figure 6-4 (a) A car sliding to the right and finally stopping after
a displacement of 290 m. A free-body diagram for the car on
(b) a horizontal road and (c) a hill.
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force, not the full force. From Sample Problem 5.04 (see Fig.
5-15i), we write that balance as 

FN � mg cos u.

In spite of these changes, we still want to write Newton’s
second law (Fnet,x � max) for the motion along the (now
tilted) x axis.We have

�fk � mg sin u � max,
�mkFN � mg sin u � max,

and �mkmg cos u � mg sin u � max.

Solving for the acceleration and substituting the given data

now give us

ax � �mkg cos u � g sin u

� �(0.10)(9.8 m/s2) cos 5.00� � (9.8 m/s2) sin 5.00�

� �0.122 m/s2. (6-13)

Substituting this result into Eq. 6-11 gives us the stopping
distance hown the hill:

x � x0 � 409 m 400 m, (Answer)

which is about mi! Such icy hills separate people who can
do this calculation (and thus know to stay home) from peo-
ple who cannot (and thus end up in web videos).

1
4

�

Additional examples, video, and practice available at WileyPLUS

6-2 THE DRAG FORCE AND TERMINAL SPEED 

After reading this module, you should be able to . . .
6.04 Apply the relationship between the drag force on an

object moving through air and the speed of the object.
6.05 Determine the terminal speed of an object falling

through air.

● When there is relative motion between air (or some other
fluid) and a body, the body experiences a drag force that
opposes the relative motion and points in the direction in
which the fluid flows relative to the body. The magnitude of 
is related to the relative speed v by an experimentally deter-
mined drag coefficient C according to

,

where r is the fluid density (mass per unit volume) and A
is the effective cross-sectional area of the body (the area

D � 1
2C�Av2

D
:

D
:

of a cross section taken perpendicular to the relative
velocity ).

● When a blunt object has fallen far enough through air, the
magnitudes of the drag force and the gravitational force 
on the body become equal. The body then falls at a constant
terminal speed vt given by

.vt � A
2Fg

CrA

Fg
:

D
:

v:

Learning Objectives

Key Ideas

The Drag Force and Terminal Speed
A fluid is anything that can flow—generally either a gas or a liquid.When there is
a relative velocity between a fluid and a body (either because the body moves
through the fluid or because the fluid moves past the body), the body experiences
a drag force that opposes the relative motion and points in the direction in
which the fluid flows relative to the body.

Here we examine only cases in which air is the fluid, the body is blunt (like
a baseball) rather than slender (like a javelin), and the relative motion is fast
enough so that the air becomes turbulent (breaks up into swirls) behind the
body. In such cases, the magnitude of the drag force is related to the relative
speed v by an experimentally determined drag coefficient C according to

(6-14)D � 1
2C�Av2,

D
:

D
:



where r is the air density (mass per volume) and A is the effective cross-sectional
area of the body (the area of a cross section taken perpendicular to the
velocity ). The drag coefficient C (typical values range from 0.4 to 1.0) is not
truly a constant for a given body because if v varies significantly, the value of C
can vary as well. Here, we ignore such complications.

Downhill speed skiers know well that drag depends on A and v2. To reach
high speeds a skier must reduce D as much as possible by, for example, riding the
skis in the “egg position” (Fig. 6-5) to minimize A.

Falling. When a blunt body falls from rest through air, the drag force is
directed upward; its magnitude gradually increases from zero as the speed of the
body increases.This upward force opposes the downward gravitational force 
on the body. We can relate these forces to the body’s acceleration by writing
Newton’s second law for a vertical y axis (Fnet,y � may) as

D � Fg � ma, (6-15)

where m is the mass of the body. As suggested in Fig. 6-6, if the body falls long
enough, D eventually equals Fg. From Eq. 6-15, this means that a � 0, and so the
body’s speed no longer increases. The body then falls at a constant speed, called
the terminal speed vt.

To find vt, we set a � 0 in Eq. 6-15 and substitute for D from Eq. 6-14, obtaining

which gives (6-16)

Table 6-1 gives values of vt for some common objects.
According to calculations* based on Eq. 6-14, a cat must fall about six

floors to reach terminal speed. Until it does so, Fg � D and the cat accelerates
downward because of the net downward force. Recall from Chapter 2
that your body is an accelerometer, not a speedometer. Because the cat also
senses the acceleration, it is frightened and keeps its feet underneath its body,
its head tucked in, and its spine bent upward, making A small, vt large, and in-
jury likely.

However, if the cat does reach vt during a longer fall, the acceleration vanishes
and the cat relaxes somewhat, stretching its legs and neck horizontally outward and

vt � A
2Fg

C�A
.

1
2C�Avt

2 � Fg � 0,

F
:

gD
:

D
:

v:
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Table 6-1 Some Terminal Speeds in Air

Object Terminal Speed (m/s) 95% Distancea (m)

Shot (from shot put) 145 2500
Sky diver (typical) 60 430
Baseball 42 210
Tennis ball 31 115
Basketball 20 47
Ping-Pong ball 9 10
Raindrop (radius � 1.5 mm) 7 6
Parachutist (typical) 5 3

aThis is the distance through which the body must fall from rest to reach 95% of its terminal speed.

Based on Peter J. Brancazio, Sport Science, 1984, Simon & Schuster, New York.

Figure 6-5 This skier crouches in an “egg
position” so as to minimize her effective
cross-sectional area and thus minimize the
air drag acting on her.

Figure 6-6 The forces that act on a body
falling through air: (a) the body when it
has just begun to fall and (b) the free-
body diagram a little later, after a drag
force has developed. (c) The drag force
has increased until it balances the
gravitational force on the body. The body
now falls at its constant terminal speed.

Karl-Josef Hildenbrand/dpa/Landov LLC

Fg

(a)

Falling
body D

D

(b) (c)

Fg
Fg

As the cat's speed
increases, the upward
drag force increases
until it balances the
gravitational force.

*W. O. Whitney and C. J. Mehlhaff, “High-Rise Syndrome in Cats.” The Journal of the American
Veterinary Medical Association, 1987.
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straightening its spine (it then resembles a flying squirrel). These actions increase
area A and thus also, by Eq. 6-14, the drag D. The cat begins to slow because now
D � Fg (the net force is upward), until a new, smaller vt is reached. The decrease
in vt reduces the possibility of serious injury on landing. Just before the end of the
fall, when it sees it is nearing the ground, the cat pulls its legs back beneath its
body to prepare for the landing.

Humans often fall from great heights for the fun of skydiving. However, in
April 1987, during a jump, sky diver Gregory Robertson noticed that fellow
sky diver Debbie Williams had been knocked unconscious in a collision with
a third sky diver and was unable to open her parachute. Robertson, who
was well above Williams at the time and who had not yet opened his parachute
for the 4 km plunge, reoriented his body head-down so as to minimize A and
maximize his downward speed. Reaching an estimated vt of 320 km/h, he
caught up with Williams and then went into a horizontal “spread eagle” (as in
Fig. 6-7) to increase D so that he could grab her. He opened her parachute
and then, after releasing her, his own, a scant 10 s before impact. Williams
received extensive internal injuries due to her lack of control on landing but
survived.

Figure 6-7 Sky divers in a horizontal
“spread eagle” maximize air drag.

Steve Fitchett/Taxi/Getty Images

sity ra and the water density rw,we obtain

(Answer)

Note that the height of the cloud does not enter into the
calculation.

(b) What would be the drop’s speed just before impact if
there were no drag force?

KEY IDEA

With no drag force to reduce the drop’s speed during the fall,
the drop would fall with the constant free-fall acceleration g,
so the constant-acceleration equations of Table 2-1 apply.

Calculation: Because we know the acceleration is g, the
initial velocity v0 is 0, and the displacement x � x0 is �h, we
use Eq. 2-16 to find v:

(Answer)

Had he known this, Shakespeare would scarcely have writ-
ten, “it droppeth as the gentle rain from heaven, upon the
place beneath.” In fact, the speed is close to that of a bullet
from a large-caliber handgun!

� 153 m/s � 550 km/h.

v � 22gh � 2(2)(9.8 m/s2)(1200 m)

� 7.4 m/s � 27 km/h.

� A
(8)(1.5 � 10�3 m)(1000 kg/m3)(9.8 m/s2)

(3)(0.60)(1.2 kg/m3)

vt � A
2Fg

Cra A
� A

8pR3rwg

3Cra
R2 � A
8Rrwg

3Cra

Sample Problem 6.03 Terminal speed of falling raindrop

A raindrop with radius R 1.5 mm falls from a cloud that is
at height h � 1200 m above the ground.The drag coefficient
C for the drop is 0.60. Assume that the drop is spherical
throughout its fall. The density of water rw is 1000 kg/m3,
and the density of air ra is 1.2 kg/m3.

(a) As Table 6-1 indicates, the raindrop reaches terminal
speed after falling just a few meters. What is the terminal
speed?

KEY IDEA

The drop reaches a terminal speed vt when the gravitational
force on it is balanced by the air drag force on it, so its accel-
eration is zero. We could then apply Newton’s second law
and the drag force equation to find vt, but Eq. 6-16 does all
that for us.

Calculations: To use Eq. 6-16, we need the drop’s effective
cross-sectional area A and the magnitude Fg of the gravita-
tional force. Because the drop is spherical, A is the area of a
circle (pR2) that has the same radius as the sphere. To find
Fg, we use three facts: (1) Fg � mg, where m is the drop’s
mass; (2) the (spherical) drop’s volume is pR3; and
(3) the density of the water in the drop is the mass per vol-
ume, or rw � m /V.Thus, we find

.

We next substitute this, the expression for A, and the given data
into Eq. 6-16. Being careful to distinguish between the air den-

Fg � Vrwg � 4
3pR3rwg

V � 4
3

�

Additional examples, video, and practice available at WileyPLUS



Uniform Circular Motion
From Module 4-5, recall that when a body moves in a circle (or a circular arc) at
constant speed v, it is said to be in uniform circular motion. Also recall that the
body has a centripetal acceleration (directed toward the center of the circle) of
constant magnitude given by

(centripetal acceleration), (6-17)

where R is the radius of the circle. Here are two examples:

1. Rounding a curve in a car. You are sitting in the center of the rear seat of a car
moving at a constant high speed along a flat road. When the driver suddenly
turns left, rounding a corner in a circular arc, you slide across the seat toward the
right and then jam against the car wall for the rest of the turn.What is going on?

While the car moves in the circular arc, it is in uniform circular motion;
that is, it has an acceleration that is directed toward the center of the circle.
By Newton’s second law, a force must cause this acceleration. Moreover, the
force must also be directed toward the center of the circle. Thus, it is a cen-
tripetal force, where the adjective indicates the direction. In this example, the
centripetal force is a frictional force on the tires from the road; it makes the
turn possible.

If you are to move in uniform circular motion along with the car, there
must also be a centripetal force on you. However, apparently the frictional
force on you from the seat was not great enough to make you go in a circle
with the car. Thus, the seat slid beneath you, until the right wall of the car
jammed into you. Then its push on you provided the needed centripetal force
on you, and you joined the car’s uniform circular motion.

2. Orbiting Earth. This time you are a passenger in the space shuttle Atlantis. As
it and you orbit Earth, you float through your cabin.What is going on?

Both you and the shuttle are in uniform circular motion and have acceler-
ations directed toward the center of the circle. Again by Newton’s second law,
centripetal forces must cause these accelerations. This time the centripetal
forces are gravitational pulls (the pull on you and the pull on the shuttle) ex-
erted by Earth and directed radially inward, toward the center of Earth.

a �
v2

R
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After reading this module, you should be able to. . . 
6.06 Sketch the path taken in uniform circular motion and

explain the velocity, acceleration, and force vectors 
(magnitudes and directions) during the motion.

6.07 ldentify that unless there is a radially inward net force
(a centripetal force), an object cannot move in circular motion.

6.08 For a particle in uniform circular motion, apply the rela-
tionship between the radius of the path, the particle’s
speed and mass, and the net force acting on the particle.

● If a particle moves in a circle or a circular arc of radius R at
constant speed v, the particle is said to be in uniform circular
motion. It then has a centripetal acceleration with magni-
tude given by

a �
v2

R
.

a:

● This acceleration is due to a net centripetal force on the
particle, with magnitude given by

,

where m is the particle’s mass. The vector quantities and 
are directed toward the center of curvature of the particle’s path.

F
:

a:

F �
mv2

R

Learning Objectives

Key Ideas
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In both car and shuttle you are in uniform circular motion, acted on by a cen-
tripetal force—yet your sensations in the two situations are quite different. In
the car, jammed up against the wall, you are aware of being compressed by the
wall. In the orbiting shuttle, however, you are floating around with no sensation
of any force acting on you.Why this difference?

The difference is due to the nature of the two centripetal forces. In the
car, the centripetal force is the push on the part of your body touching the car
wall. You can sense the compression on that part of your body. In the shuttle,
the centripetal force is Earth’s gravitational pull on every atom of your body.
Thus, there is no compression (or pull) on any one part of your body and no
sensation of a force acting on you. (The sensation is said to be one of “weight-
lessness,” but that description is tricky. The pull on you by Earth has certainly
not disappeared and, in fact, is only a little less than it would be with you on
the ground.)

Another example of a centripetal force is shown in Fig. 6-8. There a hockey
puck moves around in a circle at constant speed v while tied to a string looped
around a central peg. This time the centripetal force is the radially inward pull on
the puck from the string. Without that force, the puck would slide off in a straight
line instead of moving in a circle.

Note again that a centripetal force is not a new kind of force.The name merely
indicates the direction of the force. It can, in fact, be a frictional force, a gravitational
force, the force from a car wall or a string, or any other force. For any situation:

Figure 6-8 An overhead view of a hockey puck moving with constant speed v in a 
circular path of radius R on a horizontal frictionless surface. The centripetal force on the
puck is , the pull from the string, directed inward along the radial axis r extending
through the puck.

T
:

String

Puck

R

v r

T The puck moves
in uniform
circular motion
only because
of a toward-the-
center force.

A centripetal force accelerates a body by changing the direction of the body’s
velocity without changing the body’s speed.

From Newton’s second law and Eq. 6-17 (a � v2/R), we can write the magnitude
F of a centripetal force (or a net centripetal force) as

(magnitude of centripetal force). (6-18)

Because the speed v here is constant, the magnitudes of the acceleration and the
force are also constant.

However, the directions of the centripetal acceleration and force are not con-
stant; they vary continuously so as to always point toward the center of the circle.
For this reason, the force and acceleration vectors are sometimes drawn along a
radial axis r that moves with the body and always extends from the center of the
circle to the body, as in Fig. 6-8. The positive direction of the axis is radially out-
ward, but the acceleration and force vectors point radially inward.

F � m
v2

R
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KEY IDEA

We can assume that Diavolo and his bicycle travel through
the top of the loop as a single particle in uniform circular
motion. Thus, at the top, the acceleration of this particlea:

Sample Problem 6.04 Vertical circular loop, Diavolo

Largely because of riding in cars, you are used to horizon-
tal circular motion. Vertical circular motion would be a
novelty. In this sample problem, such motion seems to
defy the gravitational force.

In a 1901 circus performance, Allo “Dare Devil”
Diavolo introduced the stunt of riding a bicycle in a loop-
the-loop (Fig. 6-9a). Assuming that the loop is a circle with
radius R � 2.7 m, what is the least speed v that Diavolo and
his bicycle could have at the top of the loop to remain in
contact with it there?

Figure 6-9 (a) Contemporary advertisement for Diavolo and
(b) free-body diagram for the performer at the top of the
loop.

y
Diavolo

and bicycle
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Fg

FN
The net force
provides the
toward-the-center
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The normal force
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Additional examples, video, and practice available at WileyPLUS

Checkpoint 2
As every amusement park fan knows, a Ferris wheel is a ride consisting of seats
mounted on a tall ring that rotates around a horizontal axis.When you ride in a
Ferris wheel at constant speed, what are the directions of your acceleration and the
normal force on you (from the always upright seat) as you pass through (a) the
highest point and (b) the lowest point of the ride? (c) How does the magnitude of
the acceleration at the highest point compare with that at the lowest point? (d) How
do the magnitudes of the normal force compare at those two points?

F
:

N

a:

must have the magnitude a � v2/R given by Eq. 6-17 and be
directed downward, toward the center of the circular loop.

Calculations: The forces on the particle when it is at the top
of the loop are shown in the free-body diagram of Fig 6-9b.
The gravitational force is downward along a y axis; so is the
normal force on the particle from the loop (the loop can
push down, not pull up); so also is the centripetal acceleration
of the particle. Thus, Newton’s second law for y components
(Fnet,y � may) gives us

�FN � Fg � m(�a)

and (6-19)

If the particle has the least speed v needed to remain in
contact, then it is on the verge of losing contact with the loop
(falling away from the loop), which means that FN � 0 at the
top of the loop (the particle and loop touch but without any
normal force). Substituting 0 for FN in Eq. 6-19, solving for v,
and then substituting known values give us

(Answer)

Comments: Diavolo made certain that his speed at the
top of the loop was greater than 5.1 m/s so that he did not
lose contact with the loop and fall away from it. Note that
this speed requirement is independent of the mass of
Diavolo and his bicycle. Had he feasted on, say, pierogies
before his performance, he still would have had to exceed
only 5.1 m/s to maintain contact as he passed through the
top of the loop.

� 5.1 m/s.

v � 2gR � 2(9.8 m/s2)(2.7 m)

�FN � mg � m��
v2

R�.

F
:

N

F
:

g
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(b)

r
CarCenter fs

a

Fg

FN

y

R

(a)

r

FL

v

fs

The toward-the-
center force is
the frictional force.

Friction: toward the
center

Track-level view 
of the forces

Normal force:
helps support car

Gravitational force:
pulls car downward

Negative lift: presses
car downward

Figure 6-10 (a) A race car moves around a flat curved track at constant speed v. The frictional
force provides the necessary centripetal force along a radial axis r. (b) A free-body diagram
(not to scale) for the car, in the vertical plane containing r.

f
:

s

Radial calculations: The frictional force is shown in the
free-body diagram of Fig. 6-10b. It is in the negative direc-
tion of a radial axis r that always extends from the center of
curvature through the car as the car moves. The force pro-
duces a centripetal acceleration of magnitude v2/R. We can
relate the force and acceleration by writing Newton’s sec-
ond law for components along the r axis (Fnet,r � mar) as

(6-20)

Substituting fs,max � msFN for fs leads us to

(6-21)

Vertical calculations: Next, let’s consider the vertical forces
on the car. The normal force is directed up, in the posi-
tive direction of the y axis in Fig. 6-10b. The gravitational
force and the negative lift are directed down.
The acceleration of the car along the y axis is zero. Thus we
can write Newton’s second law for components along the
y axis (Fnet,y � may) as

FN � mg � FL � 0,

or FN � mg � FL. (6-22)

Combining results: Now we can combine our results along
the two axes by substituting Eq. 6-22 for FN in Eq. 6-21. Doing
so and then solving for FL lead to

(Answer)� 663.7 N � 660 N.

� (600 kg) � (28.6 m/s)2

(0.75)(100 m)
� 9.8 m/s2�

F L � m � v 2

�sR
� g�

F
:

LF
:

g � mg:

F
:

N

msFN � m � v2

R �.

�fs � m ��
v2

R �.

f
:

s

Sample Problem 6.05 Car in flat circular turn

Upside-down racing: A modern race car is designed so that
the passing air pushes down on it, allowing the car to travel
much faster through a flat turn in a Grand Prix without fric-
tion failing. This downward push is called negative lift. Can a
race car have so much negative lift that it could be driven up-
side down on a long ceiling, as done fictionally by a sedan in
the first Men in Black movie?

Figure 6-10a represents a Grand Prix race car of mass 
m � 600 kg as it travels on a flat track in a circular arc of
radius R � 100 m. Because of the shape of the car and the
wings on it, the passing air exerts a negative lift down-
ward on the car. The coefficient of static friction between
the tires and the track is 0.75. (Assume that the forces on the
four tires are identical.)

(a) If the car is on the verge of sliding out of the turn when
its speed is 28.6 m/s, what is the magnitude of the negative
lift acting downward on the car?

KEY IDEAS

1. A centripetal force must act on the car because the car
is moving around a circular arc; that force must be
directed toward the center of curvature of the arc (here,
that is horizontally).

2. The only horizontal force acting on the car is a frictional
force on the tires from the road. So the required cen-
tripetal force is a frictional force.

3. Because the car is not sliding, the frictional force must
be a static frictional force (Fig. 6-10a).

4. Because the car is on the verge of sliding, the magnitude
fs is equal to the maximum value fs,max � msFN, where FN

is the magnitude of the normal force acting on the
car from the track.

F
:

N

f
:

s

F
:

L

F
:

L
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Substituting our known negative lift of FL � 663.7 N and
solving for FL,90 give us

FL,90 � 6572 N � 6600 N. (Answer)

Upside-down racing: The gravitational force is, of course,
the force to beat if there is a chance of racing upside down:

Fg � mg � (600 kg)(9.8 m/s2)

� 5880 N.

With the car upside down, the negative lift is an upward
force of 6600 N, which exceeds the downward 5880 N. Thus,
the car could run on a long ceiling provided that it moves at
about 90 m/s (� 324 km/h � 201 mi/h). However, moving
that fast while right side up on a horizontal track is danger-
ous enough, so you are not likely to see upside-down racing
except in the movies.

(b) The magnitude FL of the negative lift on a car depends
on the square of the car’s speed v2, just as the drag force
does (Eq. 6-14). Thus, the negative lift on the car here is
greater when the car travels faster, as it does on a straight
section of track. What is the magnitude of the negative lift
for a speed of 90 m/s?

KEY IDEA 

FL is proportional to v2.

Calculations: Thus we can write a ratio of the negative lift
FL,90 at v � 90 m/s to our result for the negative lift FL at v �
28.6 m/s as

FL,90

FL
�

(90 m/s)2

(28.6 m/s)2 .

of mass m as it moves at a constant speed v of 20 m/s around
a banked circular track of radius R � 190 m. (It is a normal
car, rather than a race car, which means that any vertical
force from the passing air is negligible.) If the frictional
force from the track is negligible, what bank angle u pre-
vents sliding?

KEY IDEAS

Here the track is banked so as to tilt the normal force on
the car toward the center of the circle (Fig. 6-11b). Thus,
now has a centripetal component of magnitude FNr , directed
inward along a radial axis r. We want to find the value of
the bank angle u such that this centripetal component
keeps the car on the circular track without need of friction.

F
:

N

F
:

N

Sample Problem 6.06 Car in banked circular turn

This problem is quite challenging in setting up but takes
only a few lines of algebra to solve. We deal with not only
uniformly circular motion but also a ramp. However, we will
not need a tilted coordinate system as with other ramps.
Instead we can take a freeze-frame of the motion and work
with simply horizontal and vertical axes. As always in this
chapter, the starting point will be to apply Newton’s second
law, but that will require us to identify the force component
that is responsible for the uniform circular motion.

Curved portions of highways are always banked (tilted)
to prevent cars from sliding off the highway. When a high-
way is dry, the frictional force between the tires and the road
surface may be enough to prevent sliding. When the high-
way is wet, however, the frictional force may be negligible,
and banking is then essential. Figure 6-11a represents a car

(b)

y

r
FNr

R

(a)

θ

FNy
θv

r Car

Fg

FN

a

The toward-the-
center force is due
to the tilted track.

Track-level view 
of the forces

The gravitational force
pulls car downward.

Tilted normal force
supports car and
provides the toward-
the-center force.

Figure 6-11 (a) A car moves around a curved banked road at constant speed v. The bank angle is exaggerated for clarity. (b)
A free-body diagram for the car, assuming that friction between tires and road is zero and that the car lacks negative lift.
The radially inward component FNr of the normal force (along radial axis r) provides the necessary centripetal force and
radial acceleration.
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write Newton’s second law for components along the y axis
(Fnet,y � may) as

FN cos u � mg � m(0),

from which

FN cos u � mg. (6-24)

Combining results: Equation 6-24 also contains the
unknowns FN and m, but note that dividing Eq. 6-23 by
Eq. 6-24 neatly eliminates both those unknowns. Doing so,
replacing (sin u)/(cos u) with tan u, and solving for u then
yield

. (Answer)� tan�1 (20 m/s)2

(9.8 m/s2)(190 m)
� 12�

� � tan�1 v2

gR

Radial calculation: As Fig. 6-11b shows (and as you
should verify), the angle that force makes with the ver-
tical is equal to the bank angle u of the track. Thus, the ra-
dial component FNr is equal to FN sin u. We can now write
Newton’s second law for components along the r axis
(Fnet,r � mar) as

. (6-23)

We cannot solve this equation for the value of u because it
also contains the unknowns FN and m.

Vertical calculations: We next consider the forces and ac-
celeration along the y axis in Fig. 6-11b. The vertical com-
ponent of the normal force is FNy � FN cos u, the gravita-
tional force on the car has the magnitude mg, and the
acceleration of the car along the y axis is zero. Thus we can

F
:

g

�FN sin u � m��
v2

R �

F
:

N

Additional examples, video, and practice available at WileyPLUS

Friction When a force tends to slide a body along a surface, a
frictional force from the surface acts on the body. The frictional force
is parallel to the surface and directed so as to oppose the sliding. It is
due to bonding between the atoms on the body and the atoms on the
surface,an effect called cold-welding.

If the body does not slide, the frictional force is a static
frictional force . If there is sliding, the frictional force is a kinetic
frictional force .

1. If a body does not move, the static frictional force and the
component of parallel to the surface are equal in magnitude,
and is directed opposite that component. If the component
increases, fs also increases.

2. The magnitude of has a maximum value fs,max given by

fs,max � msFN, (6-1)

where ms is the coefficient of static friction and FN is the magni-
tude of the normal force. If the component of parallel to the
surface exceeds fs,max, the static friction is overwhelmed and the
body slides on the surface.

3. If the body begins to slide on the surface, the magnitude of the
frictional force rapidly decreases to a constant value fk given
by

fk � mkFN, (6-2)

where mk is the coefficient of kinetic friction.

Drag Force When there is relative motion between air (or
some other fluid) and a body, the body experiences a drag force
that opposes the relative motion and points in the direction in
which the fluid flows relative to the body. The magnitude of isD
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Review & Summary

related to the relative speed v by an experimentally determined
drag coefficient C according to

(6-14)

where r is the fluid density (mass per unit volume) and A is the
effective cross-sectional area of the body (the area of a cross sec-
tion taken perpendicular to the relative velocity ).

Terminal Speed When a blunt object has fallen far enough
through air, the magnitudes of the drag force and the gravita-
tional force on the body become equal. The body then falls at a
constant terminal speed vt given by

(6-16)

Uniform Circular Motion If a particle moves in a circle or a
circular arc of radius R at constant speed v, the particle is said to be
in uniform circular motion. It then has a centripetal acceleration
with magnitude given by

(6-17)

This acceleration is due to a net centripetal force on the particle,
with magnitude given by

(6-18)

where m is the particle’s mass. The vector quantities and are
directed toward the center of curvature of the particle’s path. A
particle can move in circular motion only if a net centripetal
force acts on it.
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Questions

1 In Fig. 6-12, if the box is station-
ary and the angle u between the hor-
izontal and force is increased
somewhat, do the following quanti-
ties increase, decrease, or remain the
same: (a) Fx; (b) fs; (c) FN; (d) fs,max? (e) If, instead, the box is sliding
and u is increased, does the magnitude of the frictional force on the
box increase, decrease, or remain the same?

2 Repeat Question 1 for force angled upward instead of down-
ward as drawn.

3 In Fig. 6-13, horizontal force 
of magnitude 10 N is applied to a
box on a floor, but the box does not
slide. Then, as the magnitude of ver-
tical force is increased from zero,
do the following quantities increase,
decrease, or stay the same: (a) the magnitude of the frictional
force on the box; (b) the magnitude of the normal force on
the box from the floor; (c) the maximum value fs,max of the magni-
tude of the static frictional force on the box? (d) Does the box
eventually slide?

4 In three experiments, three different horizontal forces are ap-
plied to the same block lying on the same countertop. The force
magnitudes are F1 � 12 N, F2 � 8 N, and F3 � 4 N. In each experi-
ment, the block remains stationary in spite of the applied force.
Rank the forces according to (a) the magnitude fs of the static fric-
tional force on the block from the countertop and (b) the maximum
value fs,max of that force, greatest first.

5 If you press an apple crate against a wall so hard that the crate
cannot slide down the wall, what is the direction of (a) the static
frictional force on the crate from the wall and (b) the normal
force on the crate from the wall? If you increase your push,
what happens to (c) fs, (d) FN, and (e) fs,max?

6 In Fig. 6-14, a block of mass m is held sta-
tionary on a ramp by the frictional force on
it from the ramp. A force , directed up the
ramp, is then applied to the block and grad-
ually increased in magnitude from zero.
During the increase, what happens to the di-
rection and magnitude of the frictional force
on the block?

7 Reconsider Question 6 but with the force now directed
down the ramp. As the magnitude of is increased from zero,
what happens to the direction and magnitude of the frictional
force on the block?

8 In Fig. 6-15, a horizontal force of 100 N is to be applied to a 10
kg slab that is initially stationary on a frictionless floor, to acceler-
ate the slab. A 10 kg block lies on top of the slab; the coefficient of
friction m between the block and the slab is not known, and the
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Figure 6-12 Question 1.

block might slip. In fact, the contact between the block and the slab
might even be frictionless. (a) Considering that possibility, what is
the possible range of values for the magnitude of the slab’s acceler-
ation aslab? (Hint: You don’t need written calculations; just consider
extreme values for m.) (b) What is the possible range for the mag-
nitude ablock of the block’s acceleration?

9 Figure 6-16 shows the overhead view of the path of an
amusement-park ride that travels at constant speed through five
circular arcs of radii R0, 2R0, and 3R0. Rank the arcs according to
the magnitude of the centripetal force on a rider traveling in the
arcs, greatest first.

F2

F1

Figure 6-13 Question 3.

θ 

F

Figure 6-14
Question 6.

100 N 
Block

Slab

1

2 3

4

5

Figure 6-16 Question 9.

Figure 6-15 Question 8.

10 In 1987, as a Halloween stunt, two sky divers passed a
pumpkin back and forth between them while they were in free fall
just west of Chicago.The stunt was great fun until the last sky diver
with the pumpkin opened his parachute. The pumpkin broke free
from his grip, plummeted about 0.5 km, ripped through the roof of
a house, slammed into the kitchen floor, and splattered all over the
newly remodeled kitchen. From the sky diver’s viewpoint and from
the pumpkin’s viewpoint, why did the sky diver lose control of the
pumpkin?

11 A person riding a Ferris wheel moves through positions at
(1) the top, (2) the bottom, and (3) midheight. If the wheel rotates
at a constant rate, rank these three positions according to (a) the
magnitude of the person’s centripetal acceleration, (b) the magni-
tude of the net centripetal force on the person, and (c) the magni-
tude of the normal force on the person, greatest first.

12 During a routine flight in 1956, test pilot Tom Attridge put his
jet fighter into a 20� dive for a test of the aircraft’s 20 mm machine
cannons. While traveling faster than sound at 4000 m altitude,
he shot a burst of rounds. Then, after allowing the cannons to cool,
he shot another burst at 2000 m; his speed was then 344 m/s, the
speed of the rounds relative to him was 730 m/s, and he was still in
a dive.

Almost immediately the canopy around him was shredded
and his right air intake was damaged. With little flying capability
left, the jet crashed into a wooded area, but Attridge managed to
escape the resulting explosion. Explain what apparently happened
just after the second burst of cannon rounds. (Attridge has been
the only pilot who has managed to shoot himself down.)

13 A box is on a ramp that is at angle u to the horizontal. As u
is increased from zero, and before the box slips, do the following
increase, decrease, or remain the same: (a) the component of the
gravitational force on the box, along the ramp, (b) the magnitude
of the static frictional force on the box from the ramp, (c) the
component of the gravitational force on the box, perpendicular
to the ramp, (d) the magnitude of the normal force on the
box from the ramp, and (e) the maximum value fs,max of the static
frictional force?



•9 A 3.5 kg block is pushed
along a horizontal floor by a force

of magnitude 15 N at an angle
40� with the horizontal

(Fig. 6-19). The coefficient of ki-
netic friction between the block
and the floor is 0.25. Calculate the
magnitudes of (a) the frictional
force on the block from the floor
and (b) the block’s acceleration.

•10 Figure 6-20 shows an initially
stationary block of mass m on a
floor. A force of magnitude 0.500mg
is then applied at upward angle u �
20�.What is the magnitude of the ac-
celeration of the block across the
floor if the friction coefficients are (a) ms � 0.600 and mk � 0.500
and (b) ms � 0.400 and mk � 0.300?

•11 A 68 kg crate is dragged across a floor by pulling on 
a rope attached to the crate and inclined 158 above the horizontal.
(a) If the coefficient of static friction is 0.50, what minimum force
magnitude is required from the rope to start the crate moving?
(b) If mk � 0.35, what is the magnitude of the initial acceleration of
the crate?

•12 In about 1915, Henry Sincosky of Philadelphia suspended
himself from a rafter by gripping the rafter with the thumb of each
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Module 6-1 Friction
•1 The floor of a railroad flatcar is loaded with loose crates hav-
ing a coefficient of static friction of 0.25 with the floor. If the train
is initially moving at a speed of 48 km/h, in how short a distance
can the train be stopped at constant acceleration without causing
the crates to slide over the floor?

•2 In a pickup game of dorm shuffleboard, students crazed by fi-
nal exams use a broom to propel a calculus book along the dorm
hallway. If the 3.5 kg book is pushed from rest through a distance
of 0.90 m by the horizontal 25 N force from the broom and then
has a speed of 1.60 m/s, what is the coefficient of kinetic friction be-
tween the book and floor?

•3 A bedroom bureau with a mass of 45 kg, includ-
ing drawers and clothing, rests on the floor. (a) If the coefficient of
static friction between the bureau and the floor is 0.45, what is the
magnitude of the minimum horizontal force that a person must ap-
ply to start the bureau moving? (b) If the drawers and clothing,
with 17 kg mass, are removed before the bureau is pushed, what is
the new minimum magnitude?

•4 A slide-loving pig slides down a certain 35� slide in twice the
time it would take to slide down a frictionless 35� slide. What is the
coefficient of kinetic friction between the pig and the slide?

•5 A 2.5 kg block is initially at rest on a horizontal surface. A

WWWSSM

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday
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Problems 9 and 32.

Figure 6-18 Problem 8. What moved the stone?

Jerry Schad/Photo Researchers, Inc.

•6 A baseball player with mass m � 79 kg, sliding into second
base, is retarded by a frictional force of magnitude 470 N. What is
the coefficient of kinetic friction mk between the player and the
ground?

•7 A person pushes horizontally with a force of 220 N
on a 55 kg crate to move it across a level floor. The coefficient
of kinetic friction between the crate and the floor is 0.35. What is
the magnitude of (a) the frictional force and (b) the acceleration of
the crate?

•8 The mysterious sliding stones. Along the remote
Racetrack Playa in Death Valley, California, stones sometimes
gouge out prominent trails in the desert floor, as if the stones
had been migrating (Fig. 6-18). For years curiosity mounted
about why the stones moved. One explanation was that strong
winds during occasional rainstorms would drag the rough stones

ILWSSM

horizontal force of magnitude 6.0 N and a vertical force are
then applied to the block (Fig. 6-17). The coefficients of friction for
the block and surface are ms � 0.40 and mk � 0.25. Determine the
magnitude of the frictional force acting on the block if the magni-
tude of is (a) 8.0 N, (b) 10 N, and (c) 12 N.P

:
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over ground softened by rain. When the desert dried out, the
trails behind the stones were hard-baked in place. According to
measurements, the coefficient of kinetic friction between the
stones and the wet playa ground is about 0.80. What horizontal
force must act on a 20 kg stone (a typical mass) to maintain the
stone’s motion once a gust has started it moving? (Story contin-
ues with Problem 37.)

http://www.wiley.com/college/halliday
www.flyingcircusofphysics.com


Cheerios (mass mC � 1.0 kg) and a
box of Wheaties (mass mW 3.0
kg) are accelerated across a hori-
zontal surface by a horizontal force

applied to the Cheerios box. The
magnitude of the frictional force on the Cheerios box is 2.0 N,
and the magnitude of the frictional force on the Wheaties box is
4.0 N. If the magnitude of is 12 N, what is the magnitude of the
force on the Wheaties box from the Cheerios box?

••21 An initially stationary box of sand is to be pulled across a
floor by means of a cable in which the tension should not exceed
1100 N. The coefficient of static friction between the box and the
floor is 0.35. (a) What should be the angle between the cable and
the horizontal in order to pull the greatest possible amount of sand,
and (b) what is the weight of the sand and box in that situation?

••22 In Fig. 6-23, a sled is held on an inclined plane by a cord
pulling directly up the plane. The sled is to be on the verge of
moving up the plane. In Fig. 6-
28, the magnitude F required of
the cord’s force on the sled is
plotted versus a range of values
for the coefficient of static fric-
tion ms between sled and plane:
F1 � 2.0 N, F2 � 5.0 N, and m2 �
0.50.At what angle u is the plane
inclined?
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initially at rest on a plane inclined at angle u � 15� to the horizon-
tal. The positive direction of the x axis is up the plane. Between
block and plane, the coefficient of static friction is ms � 0.50 and
the coefficient of kinetic friction is mk � 0.34. In unit-vector nota-
tion, what is the frictional force on the block from the plane when

is (a) (�5.0 N) , (b) (�8.0 N) , and (c) (�15 N) ?

••18 You testify as an expert witness in a case involving an acci-
dent in which car A slid into the rear of car B, which was stopped at
a red light along a road headed down a hill (Fig. 6-25). You find
that the slope of the hill is u � 12.0�, that the cars were separated
by distance d � 24.0 m when the driver of car A put the car into a
slide (it lacked any automatic anti-brake-lock system), and that the
speed of car A at the onset of braking was v0 � 18.0 m/s.With what
speed did car A hit car B if the coefficient of kinetic friction was
(a) 0.60 (dry road surface) and (b) 0.10 (road surface covered with
wet leaves)?

îîîP
:

hand on one side and the fingers on the opposite
side (Fig. 6-21). Sincosky’s mass was 79 kg. If the
coefficient of static friction between hand and
rafter was 0.70, what was the least magnitude of
the normal force on the rafter from each thumb
or opposite fingers? (After suspending himself,
Sincosky chinned himself on the rafter and then
moved hand-over-hand along the rafter. If you do
not think Sincosky’s grip was remarkable, try to
repeat his stunt.)

•13 A worker pushes horizontally on a 35 kg
crate with a force of magnitude 110 N. The coeffi-
cient of static friction between the crate and the
floor is 0.37. (a) What is the value of fs,max under
the circumstances? (b) Does the crate move?
(c) What is the frictional force on the crate from
the floor? (d) Suppose, next, that a second worker
pulls directly upward on the crate to help out.
What is the least vertical pull that will allow the
first worker’s 110 N push to move the crate? (e)
If, instead, the second worker pulls horizontally to help out, what is
the least pull that will get the crate moving?

•14 Figure 6-22 shows the cross
section of a road cut into the side of
a mountain. The solid line AA� rep-
resents a weak bedding plane along
which sliding is possible. Block B
directly above the highway is sepa-
rated from uphill rock by a large
crack (called a joint), so that only
friction between the block and the
bedding plane prevents sliding. The
mass of the block is 1.8 � 107 kg, the dip angle u of the bedding
plane is 24�, and the coefficient of static friction between block
and plane is 0.63. (a) Show that the block will not slide under
these circumstances. (b) Next, water seeps into the joint and ex-
pands upon freezing, exerting on the block a force parallel to
AA�. What minimum value of force magnitude F will trigger a
slide down the plane?

•15 The coefficient of static friction between Teflon and scram-
bled eggs is about 0.04. What is the smallest angle from the hori-
zontal that will cause the eggs to slide across the bottom of a
Teflon-coated skillet?

••16 A loaded penguin sled weigh-
ing 80 N rests on a plane inclined at
angle u � 20� to the horizontal (Fig.
6-23). Between the sled and the
plane, the coefficient of static
friction is 0.25, and the coefficient of
kinetic friction is 0.15. (a) What is
the least magnitude of the force 
parallel to the plane, that will pre-
vent the sled from slipping down the plane? (b) What is the mini-
mum magnitude F that will start the sled moving up the plane? (c)
What value of F is required to
move the sled up the plane at con-
stant velocity?

••17 In Fig. 6-24, a force acts on
a block weighing 45 N. The block is
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••19 A 12 N horizontal force 
pushes a block weighing 5.0 N
against a vertical wall (Fig. 6-26).
The coefficient of static friction be-
tween the wall and the block is 0.60,
and the coefficient of kinetic friction
is 0.40. Assume that the block is not
moving initially. (a) Will the block move? (b) In unit-vector nota-
tion, what is the force on the block from the wall?

••20 In Fig. 6-27, a box of
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Figure 6-36 Problem 32.

••30 A toy chest and its contents have a combined weight of 
180 N. The coefficient of static friction between toy chest and floor
is 0.42. The child in Fig. 6-35 attempts to move the chest across the
floor by pulling on an attached rope. (a) If u is 42�, what is the mag-
nitude of the force that the child must exert on the rope to put
the chest on the verge of moving? (b) Write an expression for the
magnitude F required to put the chest on the verge of moving as a
function of the angle u. Determine (c) the value of u for which F is
a minimum and (d) that minimum magnitude.

F
:

••23 When the three blocks in
Fig. 6-29 are released from rest, they
accelerate with a magnitude of
0.500 m/s2. Block 1 has mass M,
block 2 has 2M, and block 3 has 2M.
What is the coefficient of kinetic
friction between block 2 and the
table?

••24 A 4.10 kg block is pushed
along a floor by a constant applied
force that is horizontal and has a
magnitude of 40.0 N. Figure 6-30
gives the block’s speed v versus
time t as the block moves along an x
axis on the floor. The scale of the
figure’s vertical axis is set by vs �
5.0 m/s. What is the coefficient of
kinetic friction between the block
and the floor?

••25 Block B in Fig.
6-31 weighs 711 N.The coefficient of
static friction between block and
table is 0.25; angle u is 30�; assume
that the cord between B and the
knot is horizontal. Find the maxi-
mum weight of block A for which
the system will be stationary.

••26 Figure 6-32 shows three
crates being pushed over a concrete
floor by a horizontal force of
magnitude 440 N. The masses of the
crates are m1 � 30.0 kg, m2 � 10.0
kg, and m3 � 20.0 kg. The coefficient
of kinetic friction between the floor
and each of the crates is 0.700. (a)
What is the magnitude F32 of the
force on crate 3 from crate 2? (b) If
the crates then slide onto a polished
floor, where the coefficient of kinetic friction is less than 0.700, is
magnitude F32 more than, less than, or the same as it was when the
coefficient was 0.700?

••27 Body A in Fig. 6-33 weighs
102 N, and body B weighs 32 N. The
coefficients of friction between A
and the incline are ms � 0.56 and
mk � 0.25. Angle u is 40�. Let the
positive direction of an x axis be up
the incline. In unit-vector notation,
what is the acceleration of A if A is
initially (a) at rest, (b) moving up
the incline, and (c) moving down
the incline?

••28 In Fig. 6-33, two blocks are connected over a pulley. The
mass of block A is 10 kg, and the coefficient of kinetic friction be-
tween A and the incline is 0.20. Angle u of the incline is 30�. Block
A slides down the incline at constant speed. What is the mass of
block B? Assume the connecting rope has negligible mass. (The
pulley’s function is only to redirect the rope.)

F
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••29 In Fig. 6-34, blocks A and B have weights of 44 N and 22
N, respectively. (a) Determine the minimum weight of block C to
keep A from sliding if ms between A and the table is 0.20. (b) Block
C suddenly is lifted off A. What is the acceleration of block A if mk

between A and the table is 0.15?3
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by a massless string and slide down a 30� inclined plane. The coeffi-
cient of kinetic friction between the lighter block and the plane is
0.10, and the coefficient between the heavier block and the plane is
0.20. Assuming that the lighter block leads, find (a) the magnitude
of the acceleration of the blocks and (b) the tension in the taut
string.

••32 A block is pushed across a floor by a constant force that is
applied at downward angle u (Fig. 6-19). Figure 6-36 gives the accel-
eration magnitude a versus a range of values for the coefficient of
kinetic friction mk between block and floor: a1 � 3.0 m/s2, mk2 �
0.20, and mk3 � 0.40.What is the value of u?

••31 Two blocks, of weights 3.6 N and 7.2 N, are connectedSSM



kg and M � 88 kg) in Fig. 6-38 are
not attached to each other.The coef-
ficient of static friction between the
blocks is ms � 0.38, but the surface
beneath the larger block is friction-
less.What is the minimum magnitude
of the horizontal force required to
keep the smaller block from slipping down the larger block?

Module 6-2 The Drag Force and Terminal Speed
•36 The terminal speed of a sky diver is 160 km/h in the spread-
eagle position and 310 km/h in the nosedive position. Assuming
that the diver’s drag coefficient C does not change from one posi-
tion to the other, find the ratio of the effective cross-sectional area
A in the slower position to that in the faster position.

••37 Continuation of Problem 8. Now assume that 
Eq. 6-14 gives the magnitude of the air drag force on the typical 
20 kg stone, which presents to the wind a vertical cross-sectional
area of 0.040 m2 and has a drag coefficient C of 0.80. Take the air
density to be 1.21 kg/m3, and the coefficient of kinetic friction to
be 0.80. (a) In kilometers per hour, what wind speed V along the
ground is needed to maintain the stone’s motion once it has
started moving? Because winds along the ground are retarded by
the ground, the wind speeds reported for storms are often meas-
ured at a height of 10 m. Assume wind speeds are 2.00 times
those along the ground. (b) For your answer to (a), what wind
speed would be reported for the storm? (c) Is that value reason-
able for a high-speed wind in a storm? (Story continues with
Problem 65.)

••38 Assume Eq. 6-14 gives the drag force on a pilot plus ejection
seat just after they are ejected from a plane traveling horizontally
at 1300 km/h. Assume also that the mass of the seat is equal to the
mass of the pilot and that the drag coefficient is that of a sky diver.
Making a reasonable guess of the pilot’s mass and using the 
appropriate vt value from Table 6-1, estimate the magnitudes of
(a) the drag force on the pilot � seat and (b) their horizontal de-
celeration (in terms of g), both just after ejection. (The result of
(a) should indicate an engineering requirement: The seat must in-
clude a protective barrier to deflect the initial wind blast away
from the pilot’s head.)

••39 Calculate the ratio of the drag force on a jet flying at
1000 km/h at an altitude of 10 km to the drag force on a prop-
driven transport flying at half that speed and altitude. The density

F
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•••34 In Fig. 6-37, a slab of mass
m1 � 40 kg rests on a frictionless
floor, and a block of mass m2 10
kg rests on top of the slab. Between
block and slab, the coefficient of
static friction is 0.60, and the coefficient of kinetic friction is 0.40.A
horizontal force of magnitude 100 N begins to pull directly on
the block, as shown. In unit-vector notation, what are the resulting
accelerations of (a) the block and (b) the slab?

•••35 The two blocks (m � 16ILW
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•••33 A 1000 kg boat is traveling at 90 km/h when its engine
is shut off. The magnitude of the frictional force between boat
and water is proportional to the speed v of the boat: fk 70v, where
v is in meters per second and fk is in newtons. Find the time required
for the boat to slow to 45 km/h.
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of air is 0.38 kg/m3 at 10 km and 0.67 kg/m3 at 5.0 km. Assume that
the airplanes have the same effective cross-sectional area and drag 
coefficient C.

••40 In downhill speed skiing a skier is retarded by both
the air drag force on the body and the kinetic frictional force on the
skis. (a) Suppose the slope angle is u � 40.0�, the snow is dry snow
with a coefficient of kinetic friction mk � 0.0400, the mass of the
skier and equipment is m � 85.0 kg, the cross-sectional area of the
(tucked) skier is A � 1.30 m2, the drag coefficient is C � 0.150, and
the air density is 1.20 kg/m3. (a) What is the terminal speed? (b) If a
skier can vary C by a slight amount dC by adjusting, say, the hand
positions, what is the corresponding variation in the terminal
speed?

Module 6-3 Uniform Circular Motion
•41 A cat dozes on a stationary merry-go-round in an amuse-
ment park, at a radius of 5.4 m from the center of the ride.Then the
operator turns on the ride and brings it up to its proper turning
rate of one complete rotation every 6.0 s. What is the least coeffi-
cient of static friction between the cat and the merry-go-round that
will allow the cat to stay in place, without sliding (or the cat cling-
ing with its claws)?

•42 Suppose the coefficient of static friction between the road
and the tires on a car is 0.60 and the car has no negative lift. What
speed will put the car on the verge of sliding as it rounds a level
curve of 30.5 m radius?

•43 What is the smallest radius of an unbanked (flat) track
around which a bicyclist can travel if her speed is 29 km/h and the
ms between tires and track is 0.32?

•44 During an Olympic bobsled run, the Jamaican team makes a
turn of radius 7.6 m at a speed of 96.6 km/h. What is their accelera-
tion in terms of g?

••45 A student of weight 667 N rides a
steadily rotating Ferris wheel (the student sits upright). At the
highest point, the magnitude of the normal force on the student
from the seat is 556 N. (a) Does the student feel “light” or “heavy”
there? (b) What is the magnitude of at the lowest point? If the
wheel’s speed is doubled, what is the magnitude FN at the (c) high-
est and (d) lowest point?

••46 A police officer in hot pursuit drives her car through a circular
turn of radius 300 m with a constant speed of 80.0 km/h. Her mass is
55.0 kg.What are (a) the magnitude and (b) the angle (relative to ver-
tical) of the net force of the officer on the car seat? (Hint: Consider
both horizontal and vertical forces.)

••47 A circular-motion addict of mass 80 kg rides a Ferris
wheel around in a vertical circle of radius 10 m at a constant speed
of 6.1 m/s. (a) What is the period of the motion? What is the mag-
nitude of the normal force on the addict from the seat when both
go through (b) the highest point of the circular path and (c) the
lowest point?

••48 A roller-coaster car at an amusement park has a mass
of 1200 kg when fully loaded with passengers. As the car passes
over the top of a circular hill of radius 18 m, assume that its speed
is not changing. At the top of the hill, what are the (a) magnitude
FN and (b) direction (up or down) of the normal force on the car
from the track if the car’s speed is v � 11 m/s? What are (c) FN and
(d) the direction if v � 14 m/s? 
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••58 Brake or turn? Figure 6-
44 depicts an overhead view of a car’s
path as the car travels toward a wall.
Assume that the driver begins to
brake the car when the distance to
the wall is d � 107 m, and take the
car’s mass as m � 1400 kg, its initial
speed as v0 � 35 m/s, and the coeffi-
cient of static friction as ms � 0.50.
Assume that the car’s weight is dis-
tributed evenly on the four wheels,
even during braking. (a) What magni-
tude of static friction is needed (between tires and road) to stop
the car just as it reaches the wall? (b) What is the maximum pos-
sible static friction fs,max? (c) If the coefficient of kinetic friction
between the (sliding) tires and the road is mk � 0.40, at what
speed will the car hit the wall? To avoid the crash, a driver could
elect to turn the car so that it just barely misses the wall, as
shown in the figure. (d) What magnitude of frictional force would
be required to keep the car in a circular path of radius d and at
the given speed v0, so that the car moves in a quarter circle and
then parallel to the wall? (e) Is the required force less than fs,max

so that a circular path is possible? 
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Figure 6-40 Problem 50.

dv in the speed with r held constant, and (c) a variation dT in the
period with r held constant? 

••55 A bolt is threaded onto one
end of a thin horizontal rod, and
the rod is then rotated horizontally
about its other end. An engineer
monitors the motion by flashing a
strobe lamp onto the rod and bolt,
adjusting the strobe rate until the
bolt appears to be in the same
eight places during each full rota-
tion of the rod (Fig. 6-42). The strobe rate is 2000 flashes per sec-
ond; the bolt has mass 30 g and is at radius 3.5 cm. What is the
magnitude of the force on the bolt from the rod?

••56 A banked circular highway curve is designed for traffic
moving at 60 km/h. The radius of the curve is 200 m. Traffic is
moving along the highway at 40 km/h on a rainy day. What is the
minimum coefficient of friction between tires and road that will
allow cars to take the turn without sliding off the road? (Assume
the cars do not have negative lift.)

••57 A puck of mass m � 1.50 kg slides in a circle of radius
r 20.0 cm on a frictionless table while attached to a hanging
cylinder of mass M � 2.50 kg by means of a cord that extends
through a hole in the table (Fig. 6-43).What speed keeps the cylin-
der at rest?

�

••49 In Fig. 6-39, a car is driven at constant speed over a circu-
lar hill and then into a circular valley with the same radius. At the
top of the hill, the normal force on the driver from the car seat is 0.
The driver’s mass is 70.0 kg. What is the magnitude of the normal
force on the driver from the seat when the car passes through the
bottom of the valley?

Radius

Radius

Figure 6-39 Problem 49.

••50 An 85.0 kg passenger is made to move along a circular path
of radius r � 3.50 m in uniform circular motion. (a) Figure 6-40a is
a plot of the required magnitude F of the net centripetal force for a
range of possible values of the passenger’s speed v. What is the
plot’s slope at v � 8.30 m/s? (b) Figure 6-40b is a plot of F for a
range of possible values of T, the period of the motion. What is the
plot’s slope at T � 2.50 s?

••51 An airplane is fly-
ing in a horizontal circle at a speed of
480 km/h (Fig. 6-41). If its wings are
tilted at angle u � 40� to the horizon-
tal, what is the radius of the circle in
which the plane is flying? Assume
that the required force is provided
entirely by an “aerodynamic lift” that
is perpendicular to the wing surface.

••52 An amusement park
ride consists of a car moving in a ver-
tical circle on the end of a rigid boom
of negligible mass. The combined weight of the car and riders is 5.0
kN, and the circle’s radius is 10 m. At the top of the circle, what
are the (a) magnitude FB and (b) direction (up or down) of
the force on the car from the boom if the car’s speed is v � 5.0 m/s?
What are (c) FB and (d) the direction if v � 12 m/s? 

••53 An old streetcar rounds a flat corner of radius 9.1 m, at
16 km/h. What angle with the vertical will be made by the loosely
hanging hand straps?

••54 In designing circular rides for amusement parks,
mechanical engineers must consider how small variations in cer-
tain parameters can alter the net force on a passenger. Consider a
passenger of mass m riding around a horizontal circle of radius r at
speed v. What is the variation dF in the net force magnitude for
(a) a variation dr in the radius with v held constant, (b) a variation
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•••59 In Fig. 6-45, a 1.34 kg
ball is connected by means of two mass-
less strings, each of length L 1.70 m, to
a vertical, rotating rod.The strings are tied
to the rod with separation d � 1.70 m and
are taut. The tension in the upper string is
35 N. What are the (a) tension in the lower
string, (b) magnitude of the net force 
on the ball, and (c) speed of the ball? (d)
What is the direction of ?F

:

net

F
:

net

�

ILWSSM 63 In Fig. 6-49, a 49 kg rock climber is climbing a “chim-
ney.” The coefficient of static friction between her shoes and the
rock is 1.2; between her back and the rock is 0.80. She has reduced
her push against the rock until her back and her shoes are on the
verge of slipping. (a) Draw a free-body diagram of her. (b) What is
the magnitude of her push against the rock? (c) What fraction of
her weight is supported by the frictional force on her shoes?

m1

m2

θ 
Figure 6-46 Problem 60.

61 A block of mass mt � 4.0 kg is put on top of a block of
mass mb 5.0 kg. To cause the top block to slip on the bottom one
while the bottom one is held fixed, a horizontal force of at least 12
N must be applied to the top block. The assembly of blocks is now
placed on a horizontal, frictionless table (Fig. 6-47). Find the mag-
nitudes of (a) the maximum horizontal force that can be applied
to the lower block so that the blocks will move together and (b) the
resulting acceleration of the blocks.
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Figure 6-47 Problem 61.

62 A 5.00 kg stone is rubbed across the horizontal ceiling of a
cave passageway (Fig. 6-48). If the coefficient of kinetic friction is
0.65 and the force applied to the stone is angled at u � 70.0°, what
must the magnitude of the force be for the stone to move at constant
velocity?

Stone

θ 
F

Figure 6-48 Problem 62.

Figure 6-49 Problem 63.

64 A high-speed railway car goes around a flat, horizontal circle
of radius 470 m at a constant speed. The magnitudes of the hori-
zontal and vertical components of the force of the car on a 51.0 kg
passenger are 210 N and 500 N, respectively. (a) What is the magni-
tude of the net force (of all the forces) on the passenger? (b) What
is the speed of the car?

65 Continuation of Problems 8 and 37. Another explana-
tion is that the stones move only when the water dumped on the
playa during a storm freezes into a large, thin sheet of ice. The
stones are trapped in place in the ice. Then, as air flows across
the ice during a wind, the air-drag forces on the ice and stones
move them both, with the stones gouging out the trails. The magni-
tude of the air-drag force on this horizontal “ice sail” is given by
Dice � 4CicerAicev2, where Cice is the drag coefficient (2.0 � 10�3), r
is the air density (1.21 kg/m3), Aice is the horizontal area of the ice,
and v is the wind speed along the ice.

Assume the following: The ice sheet measures 400 m by 500 m
by 4.0 mm and has a coefficient of kinetic friction of 0.10 with the
ground and a density of 917 kg/m3. Also assume that 100 stones
identical to the one in Problem 8 are trapped in the ice. To main-
tain the motion of the sheet, what are the required wind speeds (a)
near the sheet and (b) at a height of 10 m? (c) Are these reason-
able values for high-speed winds in a storm?

66 In Fig. 6-50, block 1 of mass m1 2.0 kg and block 2 of
mass m2 3.0 kg are connected by a string of negligible mass and
are initially held in place. Block 2 is on a frictionless surface tilted
at u � 30�. The coefficient of kinetic friction between block 1 and
the horizontal surface is 0.25. The pulley has negligible mass and
friction. Once they are released, the blocks move. What then is the
tension in the string?
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Figure 6-50 Problem 66.

Additional Problems
60 In Fig. 6-46, a box of ant aunts (total
mass m1 � 1.65 kg) and a box of ant un-
cles (total mass m2 � 3.30 kg) slide down an inclined plane while
attached by a massless rod parallel to the plane. The angle of in-
cline is u � 30.0°. The coefficient of kinetic friction between the
aunt box and the incline is m1 � 0.226; that between the uncle box
and the incline is m2 � 0.113. Compute (a) the tension in the rod
and (b) the magnitude of the common acceleration of the two
boxes. (c) How would the answers to (a) and (b) change if the un-
cles trailed the aunts?
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Figure 6-45
Problem 59.
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Figure 6-55 Problem 76.

67 In Fig. 6-51, a crate slides down an inclined right-angled
trough.The coefficient of kinetic friction between the crate and the
trough is mk. What is the acceleration of the crate in terms of mk, u,
and g?

To three significant figures, what is the magnitude of that applied
force if it puts the block on the verge of sliding when the force is
directed (a) horizontally, (b) upward at 60.0� from the horizontal,
and (c) downward at 60.0° from the horizontal?

72 A box of canned goods slides down a ramp from street level
into the basement of a grocery store with acceleration 0.75 m/s2 di-
rected down the ramp. The ramp makes an angle of 40� with the
horizontal. What is the coefficient of kinetic friction between the
box and the ramp?

73 In Fig. 6-54, the coefficient of kinetic friction
between the block and inclined plane is 0.20, and
angle u is 60�. What are the (a) magnitude a and
(b) direction (up or down the plane) of the block’s
acceleration if the block is sliding down the plane?
What are (c) a and (d) the direction if the block is
sent sliding up the plane?

74 A 110 g hockey puck sent sliding over ice is
stopped in 15 m by the frictional force on it from the ice. (a) If its ini-
tial speed is 6.0 m/s, what is the magnitude of the frictional force? (b)
What is the coefficient of friction between the puck and the ice?

75 A locomotive accelerates a 25-car train along a level track.
Every car has a mass of 5.0 � 104 kg and is subject to a frictional
force f � 250v, where the speed v is in meters per second and the
force f is in newtons. At the instant when the speed of the train is
30 km/h, the magnitude of its acceleration is 0.20 m/s2. (a) What
is the tension in the coupling between the first car and the 
locomotive? (b) If this tension is equal to the maximum force the
locomotive can exert on the train, what is the steepest grade up
which the locomotive can pull the train at 30 km/h?

76 A house is built on the top of a hill with a nearby slope at angle 
u � 45� (Fig. 6-55). An engineering study indicates that the slope an-
gle should be reduced because the top layers of soil along the slope
might slip past the lower layers. If the coefficient of static friction be-
tween two such layers is 0.5, what is the least angle f through which
the present slope should be reduced to prevent slippage?

θ 

90°

Figure 6-51 Problem 67.

68 Engineering a highway curve. If a car goes through a curve too
fast, the car tends to slide out of the curve. For a banked curve with
friction, a frictional force acts on a fast car to oppose the tendency
to slide out of the curve; the force is directed down the bank (in the
direction water would drain). Consider a circular curve of radius 
R � 200 m and bank angle u, where the coefficient of static friction
between tires and pavement is ms. A car (without negative lift) is
driven around the curve as shown in Fig. 6-11. (a) Find an expres-
sion for the car speed vmax that puts the car on the verge of sliding
out. (b) On the same graph, plot vmax versus angle u for the range 0�
to 50�, first for ms � 0.60 (dry pavement) and then for
ms � 0.050 (wet or icy pavement). In kilometers per hour, evaluate
vmax for a bank angle of u � 10� and for (c) ms � 0.60 and (d) ms �
0.050. (Now you can see why accidents occur in highway curves
when icy conditions are not obvious to drivers, who tend to drive at
normal speeds.)

69 A student, crazed by final exams, uses a force of magnitude
80 N and angle u � 70� to push a 5.0 kg block across the ceiling of
his room (Fig. 6-52). If the coefficient of kinetic friction between the
block and the ceiling is 0.40, what is the magnitude of the block’s 
acceleration?

P
:

70 Figure 6-53 shows a conical
pendulum, in which the bob (the
small object at the lower end of the
cord) moves in a horizontal circle at
constant speed. (The cord sweeps
out a cone as the bob rotates.) The
bob has a mass of 0.040 kg, the
string has length L � 0.90 m and
negligible mass, and the bob follows
a circular path of circumference
0.94 m. What are (a) the tension in
the string and (b) the period of the
motion?

71 An 8.00 kg block of steel is at
rest on a horizontal table. The co-
efficient of static friction between
the block and the table is 0.450. A
force is to be applied to the block.

L

Bob

Cord

r

Figure 6-53 Problem 70.
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Figure 6-54
Problem 73.

77 What is the terminal speed of a 6.00 kg spherical ball that has
a radius of 3.00 cm and a drag coefficient of 1.60? The density of
the air through which the ball falls is 1.20 kg/m3.

78 A student wants to determine the coefficients of static fric-
tion and kinetic friction between a box and a plank. She places
the box on the plank and gradually raises one end of the plank.
When the angle of inclination with the horizontal reaches 30�, the
box starts to slip, and it then slides 2.5 m down the plank in 4.0 s
at constant acceleration. What are (a) the coefficient of static
friction and (b) the coefficient of kinetic friction between the box
and the plank?
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79 Block A in Fig. 6-56 has mass mA � 4.0 kg, and block B has
mass mB 2.0 kg.The coefficient of kinetic friction between block B
and the horizontal plane is mk � 0.50.The inclined plane is frictionless
and at angle u � 30°.The pulley serves only to change the direction
of the cord connecting the blocks. The cord has negligible mass.
Find (a) the tension in the cord and (b) the magnitude of the accel-
eration of the blocks.

�

SSM cal change in the road surface because of the temperature de-
crease. By what percentage must the coefficient decrease if the car
is to be in danger of sliding down the street?

86 A sling-thrower puts a stone (0.250 kg) in the sling’s
pouch (0.010 kg) and then begins to make the stone and pouch
move in a vertical circle of radius 0.650 m. The cord between the
pouch and the person’s hand has negligible mass and will break
when the tension in the cord is 33.0 N or more. Suppose the sling-
thrower could gradually increase the speed of the stone. (a) Will
the breaking occur at the lowest point of the circle or at the highest
point? (b) At what speed of the stone will that breaking occur?

87 A car weighing 10.7 kN and traveling at 13.4 m/s without
negative lift attempts to round an unbanked curve with a radius of
61.0 m. (a) What magnitude of the frictional force on the tires is re-
quired to keep the car on its circular path? (b) If the coefficient of
static friction between the tires and the road is 0.350, is the attempt
at taking the curve successful?

88 In Fig. 6-59, block 1 of mass 
m1 � 2.0 kg and block 2 of mass 
m2 � 1.0 kg are connected by a
string of negligible mass. Block 2 is
pushed by force of magnitude 20
N and angle u � 35�. The coefficient
of kinetic friction between each block and the horizontal surface is
0.20.What is the tension in the string?

89 A filing cabinet weighing 556 N rests on the floor. The
coefficient of static friction between it and the floor is 0.68, and the
coefficient of kinetic friction is 0.56. In four different attempts to
move it, it is pushed with horizontal forces of magnitudes (a) 222 N,
(b) 334 N, (c) 445 N, and (d) 556 N. For each attempt, calculate the
magnitude of the frictional force on it from the floor. (The cabinet is
initially at rest.) (e) In which of the attempts does the cabinet move?

90 In Fig. 6-60, a block weighing 22 N is held at
rest against a vertical wall by a horizontal force 
of magnitude 60 N. The coefficient of static friction
between the wall and the block is 0.55, and the co-
efficient of kinetic friction between them is 0.38. In
six experiments, a second force is applied to the
block and directed parallel to the wall with these
magnitudes and directions: (a) 34 N, up, (b) 12 N,
up, (c) 48 N, up, (d) 62 N, up, (e) 10 N, down, and
(f) 18 N, down. In each experiment, what is the
magnitude of the frictional force on the block? In
which does the block move (g) up the wall and (h) down the wall?
(i) In which is the frictional force directed down the wall?

91 A block slides with constant velocity down an inclined
plane that has slope angle .The block is then projected up the same
plane with an initial speed v0. (a) How far up the plane will it move
before coming to rest? (b) After the block comes to rest, will it slide
down the plane again? Give an argument to back your answer.

92 A circular curve of highway is designed for traffic moving at
60 km/h. Assume the traffic consists of cars without negative lift.
(a) If the radius of the curve is 150 m, what is the correct angle of
banking of the road? (b) If the curve were not banked, what would
be the minimum coefficient of friction between tires and road that
would keep traffic from skidding out of the turn when traveling at
60 km/h?
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Figure 6-56 Problem 79.

80 Calculate the magnitude of the drag force on a missile 53 cm
in diameter cruising at 250 m/s at low altitude, where the density of
air is 1.2 kg/m3. Assume C � 0.75.

81 A bicyclist travels in a circle of radius 25.0 m at a con-
stant speed of 9.00 m/s.The bicycle–rider mass is 85.0 kg. Calculate
the magnitudes of (a) the force of friction on the bicycle from the
road and (b) the net force on the bicycle from the road.

82 In Fig. 6-57, a stuntman drives
a car (without negative lift) over
the top of a hill, the cross section of
which can be approximated by a
circle of radius R � 250 m. What is
the greatest speed at which he can
drive without the car leaving the road at the top of the hill?

83 You must push a crate across a floor to a docking bay. The
crate weighs 165 N. The coefficient of static friction between crate
and floor is 0.510, and the coefficient of kinetic friction is 0.32.
Your force on the crate is directed horizontally. (a) What magni-
tude of your push puts the crate on the verge of sliding? (b) With
what magnitude must you then push to keep the crate moving at a
constant velocity? (c) If, instead, you then push with the same
magnitude as the answer to (a), what is the magnitude of the
crate’s acceleration?

84 In Fig. 6-58, force is applied
to a crate of mass m on a floor
where the coefficient of static fric-
tion between crate and floor is ms.
Angle u is initially 0� but is gradu-
ally increased so that the force vec-
tor rotates clockwise in the figure. During the rotation, the mag-
nitude F of the force is continuously adjusted so that the crate is
always on the verge of sliding. For ms � 0.70, (a) plot the ratio
F/mg versus u and (b) determine the angle uinf at which the ratio
approaches an infinite value. (c) Does lubricating the floor in-
crease or decrease uinf, or is the value unchanged? (d) What is uinf

for ms � 0.60?

85 In the early afternoon, a car is parked on a street that runs
down a steep hill, at an angle of 35.0� relative to the horizontal. Just
then the coefficient of static friction between the tires and the
street surface is 0.725. Later, after nightfall, a sleet storm hits the
area, and the coefficient decreases due to both the ice and a chemi-
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93 A 1.5 kg box is initially at rest on a horizontal surface when at
t � 0 a horizontal force (with t in seconds) is applied
to the box. The acceleration of the box as a function of time t is
given by for 0 � t � 2.8 s and for t �
2.8 s. (a) What is the coefficient of static friction between the box
and the surface? (b) What is the coefficient of kinetic friction be-
tween the box and the surface?

94 A child weighing 140 N sits at rest at the top of a playground
slide that makes an angle of 25� with the horizontal.The child keeps
from sliding by holding onto the sides of the slide. After letting go
of the sides, the child has a constant acceleration of 0.86 m/s2 (down
the slide, of course). (a) What is the coefficient of kinetic friction be-
tween the child and the slide? (b) What maximum and minimum
values for the coefficient of static friction between the child and the
slide are consistent with the information given here?

95 In Fig. 6-61 a fastidious worker
pushes directly along the handle of
a mop with a force . The handle is
at an angle u with the vertical, and
ms and mk are the coefficients of
static and kinetic friction between
the head of the mop and the floor.
Ignore the mass of the handle and
assume that all the mop’s mass m is
in its head. (a) If the mop head
moves along the floor with a con-
stant velocity, then what is F? (b) Show that if u is less than a cer-
tain value u0, then (still directed along the handle) is unable to
move the mop head. Find u0.

96 A child places a picnic basket on the outer rim of a merry-
go-round that has a radius of 4.6 m and revolves once every 30 s.
(a) What is the speed of a point on that rim? (b) What is the lowest
value of the coefficient of static friction between basket and
merry-go-round that allows the basket to stay on the ride?

97 A warehouse worker exerts a constant horizontal force
of magnitude 85 N on a 40 kg box that is initially at rest on the hor-
izontal floor of the warehouse.When the box has moved a distance
of 1.4 m, its speed is 1.0 m/s. What is the coefficient of kinetic fric-
tion between the box and the floor?

98 In Fig. 6-62, a 5.0 kg block is sent sliding up a plane inclined at
u � 37° while a horizontal force of magnitude 50 N acts on it.
The coefficient of kinetic friction between block and plane is 0.30.
What are the (a) magnitude and (b) direction (up or down the
plane) of the block’s acceleration? The block’s initial speed is 4.0
m/s. (c) How far up the plane does the block go? (d) When it
reaches its highest point, does it remain at rest or slide back down
the plane?
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99 An 11 kg block of steel is at rest on a horizontal table. The
coefficient of static friction between block and table is 0.52. (a)
What is the magnitude of the horizontal force that will put the
block on the verge of moving? (b) What is the magnitude of a
force acting upward 60� from the horizontal that will put the
block on the verge of moving? (c) If the force acts downward at
60� from the horizontal, how large can its magnitude be without
causing the block to move?

100 A ski that is placed on snow will stick to the snow. However,
when the ski is moved along the snow, the rubbing warms and par-
tially melts the snow, reducing the coefficient of kinetic friction
and promoting sliding.Waxing the ski makes it water repellent and
reduces friction with the resulting layer of water. A magazine 
reports that a new type of plastic ski is especially water repellent
and that, on a gentle 200 m slope in the Alps, a skier reduced his
top-to-bottom time from 61 s with standard skis to 42 s with the
new skis. Determine the magnitude of his average acceleration
with (a) the standard skis and (b) the new skis. Assuming a 3.0�
slope, compute the coefficient of kinetic friction for (c) the stan-
dard skis and (d) the new skis.

101 Playing near a road construction site, a child falls over a
barrier and down onto a dirt slope that is angled downward at 35�
to the horizontal. As the child slides down the slope, he has an
acceleration that has a magnitude of 0.50 m/s2 and that is directed
up the slope. What is the coefficient of kinetic friction between the
child and the slope?

102 A 100 N force, directed at an angle u above a horizontal
floor, is applied to a 25.0 kg chair sitting on the floor. If u � 0�, what
are (a) the horizontal component Fh of the applied force and
(b) the magnitude FN of the normal force of the floor on the chair?
If u � 30.0�, what are (c) Fh and (d) FN? If u � 60.0�, what are (e) Fh

and (f) FN? Now assume that the coefficient of static friction be-
tween chair and floor is 0.420. Does the chair slide or remain at rest
if u is (g) 0�, (h) 30.0�, and (i) 60.0�?

103 A certain string can withstand a maximum tension of 40 N
without breaking. A child ties a 0.37 kg stone to one end and, hold-
ing the other end, whirls the stone in a vertical circle of radius 0.91
m, slowly increasing the speed until the string breaks. (a) Where is
the stone on its path when the string breaks? (b) What is the speed
of the stone as the string breaks?

104 A four-person bobsled (total mass � 630 kg) comes
down a straightaway at the start of a bobsled run.The straightaway
is 80.0 m long and is inclined at a constant angle of 10.2� with the
horizontal. Assume that the combined effects of friction and air
drag produce on the bobsled a constant force of 62.0 N that acts
parallel to the incline and up the incline. Answer the following
questions to three significant digits. (a) If the speed of the bobsled
at the start of the run is 6.20 m/s, how long does the bobsled take to
come down the straightaway? (b) Suppose the crew is able to re-
duce the effects of friction and air drag to 42.0 N. For the same ini-
tial velocity, how long does the bobsled now take to come down the
straightaway?

105 As a 40 N block slides down a plane that is inclined at 25� to
the horizontal, its acceleration is 0.80 m/s2, directed up the plane.
What is the coefficient of kinetic friction between the block and
the plane?

θ F

Figure 6-61 Problem 95.

F

θ 

Figure 6-62 Problem 98.



What Is Physics?
One of the fundamental goals of physics is to investigate something that every-
one talks about: energy. The topic is obviously important. Indeed, our civilization
is based on acquiring and effectively using energy.

For example, everyone knows that any type of motion requires energy:
Flying across the Pacific Ocean requires it. Lifting material to the top floor of an
office building or to an orbiting space station requires it. Throwing a fastball
requires it. We spend a tremendous amount of money to acquire and use energy.
Wars have been started because of energy resources. Wars have been ended
because of a sudden, overpowering use of energy by one side. Everyone knows
many examples of energy and its use, but what does the term energy really mean?

What Is Energy?
The term energy is so broad that a clear definition is difficult to write.Technically,
energy is a scalar quantity associated with the state (or condition) of one or more
objects. However, this definition is too vague to be of help to us now.

A looser definition might at least get us started. Energy is a number that we
associate with a system of one or more objects. If a force changes one of the
objects by, say, making it move, then the energy number changes. After countless
experiments, scientists and engineers realized that if the scheme by which we
assign energy numbers is planned carefully, the numbers can be used to predict the
outcomes of experiments and, even more important, to build machines, such as fly-
ing machines. This success is based on a wonderful property of our universe:
Energy can be transformed from one type to another and transferred from one
object to another, but the total amount is always the same (energy is conserved).
No exception to this principle of energy conservation has ever been found.

Money. Think of the many types of energy as being numbers representing
money in many types of bank accounts. Rules have been made about what such
money numbers mean and how they can be changed. You can transfer money
numbers from one account to another or from one system to another, perhaps

C H A P T E R  7

Kinetic Energy and Work

7-1 KINETIC ENERGY

After reading this module, you should be able to . . .

7.01 Apply the relationship between a particle’s kinetic
energy, mass, and speed.

7.02 Identify that kinetic energy is a scalar quantity.

Key Idea

Learning Objectives
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● The kinetic energy K associated with the motion of a particle of mass m and speed v, where v is well below the speed of light, is

(kinetic energy).K � 1
2 mv2



electronically with nothing material actually moving. However, the total amount
(the total of all the money numbers) can always be accounted for: It is always
conserved. In this chapter we focus on only one type of energy (kinetic energy)
and on only one way in which energy can be transferred (work).

Kinetic Energy
Kinetic energy K is energy associated with the state of motion of an object. The
faster the object moves, the greater is its kinetic energy. When the object is
stationary, its kinetic energy is zero.

For an object of mass m whose speed v is well below the speed of light,

(kinetic energy). (7-1)

For example, a 3.0 kg duck flying past us at 2.0 m/s has a kinetic energy of 
6.0 kg �m2/s2; that is, we associate that number with the duck’s motion.

The SI unit of kinetic energy (and all types of energy) is the joule (J), named
for James Prescott Joule, an English scientist of the 1800s and defined as

1 joule � 1 J � 1 kg �m2/s2. (7-2)

Thus, the flying duck has a kinetic energy of 6.0 J.

K � 1
2mv2
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Sample Problem 7.01 Kinetic energy, train crash

In 1896 in Waco,Texas,William Crush parked two locomotives
at opposite ends of a 6.4-km-long track, fired them up, tied
their throttles open, and then allowed them to crash head-on at
full speed (Fig. 7-1) in front of 30,000 spectators. Hundreds of
people were hurt by flying debris; several were killed.
Assuming each locomotive weighed 1.2 � 106 N and its accel-
eration was a constant 0.26 m/s2, what was the total kinetic en-
ergy of the two locomotives just before the collision?

KEY IDEAS

(1) We need to find the kinetic energy of each locomotive
with Eq. 7-1, but that means we need each locomotive’s
speed just before the collision and its mass. (2) Because we
can assume each locomotive had constant acceleration, we
can use the equations in Table 2-1 to find its speed v just be-
fore the collision.

Calculations: We choose Eq. 2-16 because we know values
for all the variables except v:

With v0 � 0 and x � x0 � 3.2 � 103 m (half the initial sepa-
ration), this yields

v2 � 0 � 2(0.26 m/s2)(3.2 � 103 m),

or v � 40.8 m/s � 147 km/h.

v2 � v0
2 � 2a(x � x0).

Figure 7-1 The aftermath of an 1896 crash of two locomotives.

Courtesy Library of Congress

We can find the mass of each locomotive by dividing its
given weight by g:

Now, using Eq. 7-1, we find the total kinetic energy of
the two locomotives just before the collision as

(Answer)

This collision was like an exploding bomb.

� 2.0 � 108 J.

K � 2(1
2 mv2) � (1.22 � 105 kg)(40.8 m/s)2

m �
1.2 � 106 N

9.8 m/s2 � 1.22 � 105 kg.

Additional examples, video, and practice available at WileyPLUS



Work
If you accelerate an object to a greater speed by applying a force to the object,
you increase the kinetic energy of the object. Similarly, if you decel-
erate the object to a lesser speed by applying a force, you decrease the kinetic
energy of the object. We account for these changes in kinetic energy by saying
that your force has transferred energy to the object from yourself or from the
object to yourself. In such a transfer of energy via a force, work W is said to be
done on the object by the force. More formally, we define work as follows:

K (� 1
2 mv2)
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7-2 WORK AND KINETIC ENERGY

After reading this module, you should be able to . . .

7.03 Apply the relationship between a force (magnitude and
direction) and the work done on a particle by the force
when the particle undergoes a displacement.

7.04 Calculate work by taking a dot product of the force vec-
tor and the displacement vector, in either magnitude-angle
or unit-vector notation.

7.05 If multiple forces act on a particle, calculate the net work
done by them.

7.06 Apply the work–kinetic energy theorem to relate the
work done by a force (or the net work done by multiple
forces) and the resulting change in kinetic energy.

● Work W is energy transferred to or from an object via a
force acting on the object. Energy transferred to the object
is positive work, and from the object, negative work.

● The work done on a particle by a constant force during
displacement is

(work, constant force),

in which f is the constant angle between the directions of 
and .

● Only the component of that is along the displacement 
can do work on the object. 

d
:

F
:

d
:

F
:

W � Fd cos f � F
:

� d
:

d
:

F
:

● When two or more forces act on an object, their net work is
the sum of the individual works done by the forces, which is
also equal to the work that would be done on the object by
the net force of those forces.

● For a particle, a change �K in the kinetic energy equals the
net work W done on the particle:

�K � Kf � Ki � W (work–kinetic energy theorem),

in which Ki is the initial kinetic energy of the particle and Kf is
the kinetic energy after the work is done. The equation
rearranged gives us

Kf � Ki � W.

F
:

net

Learning Objectives

Key Ideas

Work W is energy transferred to or from an object by means of a force acting on
the object. Energy transferred to the object is positive work, and energy transferred
from the object is negative work.

“Work,” then, is transferred energy; “doing work” is the act of transferring the
energy. Work has the same units as energy and is a scalar quantity.

The term transfer can be misleading. It does not mean that anything material
flows into or out of the object; that is, the transfer is not like a flow of water.
Rather, it is like the electronic transfer of money between two bank accounts:
The number in one account goes up while the number in the other account goes
down, with nothing material passing between the two accounts.

Note that we are not concerned here with the common meaning of the word
“work,” which implies that any physical or mental labor is work. For example, if
you push hard against a wall, you tire because of the continuously repeated mus-
cle contractions that are required, and you are, in the common sense, working.
However, such effort does not cause an energy transfer to or from the wall and
thus is not work done on the wall as defined here.

To avoid confusion in this chapter, we shall use the symbol W only for work
and shall represent a weight with its equivalent mg.



Work and Kinetic Energy
Finding an Expression for Work
Let us find an expression for work by considering a bead that can slide along
a frictionless wire that is stretched along a horizontal x axis (Fig. 7-2). A constant
force , directed at an angle f to the wire, accelerates the bead along the wire.
We can relate the force and the acceleration with Newton’s second law, written
for components along the x axis:

Fx � max, (7-3)

where m is the bead’s mass. As the bead moves through a displacement , the
force changes the bead’s velocity from an initial value to some other value .
Because the force is constant, we know that the acceleration is also constant.
Thus, we can use Eq. 2-16 to write, for components along the x axis,

(7-4)

Solving this equation for ax, substituting into Eq. 7-3, and rearranging then give us

(7-5)

The first term is the kinetic energy Kf of the bead at the end of the displacement
d, and the second term is the kinetic energy Ki of the bead at the start. Thus, the
left side of Eq. 7-5 tells us the kinetic energy has been changed by the force, and
the right side tells us the change is equal to Fxd. Therefore, the work W done on
the bead by the force (the energy transfer due to the force) is

W � Fxd. (7-6)

If we know values for Fx and d, we can use this equation to calculate the work W.

1
2 mv2 �

1
2 mv0

2 � Fxd.

v2 � v0
2 � 2axd.

v:v:0

d
:

F
:
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To calculate the work a force does on an object as the object moves through some
displacement, we use only the force component along the object’s displacement.
The force component perpendicular to the displacement does zero work.

Figure 7-2 A constant force directed at
angle f to the displacement of a bead
on a wire accelerates the bead along the
wire, changing the velocity of the bead
from to . A “kinetic energy gauge”
indicates the resulting change in the kinet-
ic energy of the bead, from the value Ki to
the value Kf.
In WileyPLUS, this figure is available as
an animation with voiceover.

v:v:0

d
:

F
:

A

From Fig. 7-2, we see that we can write Fx as F cos f, where f is the angle
between the directions of the displacement and the force .Thus,

W � Fd cos f (work done by a constant force). (7-7)

F
:

d
:

xx
Bead

Wireφ

F

Ki

Kf

v

v0

This component
does no work.

Small initial
kinetic energy

Larger final
kinetic energy

This force does positive work
on the bead, increasing speed
and kinetic energy.

This component
does work.

φ

F

φ

F

φ

F

Displacement d



We can use the definition of the scaler (dot) product (Eq. 3-20) to write

(work done by a constant force), (7-8)

where F is the magnitude of (You may wish to review the discussion of scaler
products in Module 3-3.) Equation 7-8 is especially useful for calculating the
work when and are given in unit-vector notation.

Cautions. There are two restrictions to using Eqs. 7-6 through 7-8 to calculate
work done on an object by a force. First, the force must be a constant force; that
is, it must not change in magnitude or direction as the object moves. (Later, we
shall discuss what to do with a variable force that changes in magnitude.) Second,
the object must be particle-like. This means that the object must be rigid; all parts
of it must move together, in the same direction. In this chapter we consider only
particle-like objects, such as the bed and its occupant being pushed in Fig. 7-3.

Signs for Work. The work done on an object by a force can be either positive
work or negative work. For example, if angle f in Eq. 7-7 is less than 90�, then cos f is
positive and thus so is the work. However, if f is greater than 90� (up to 180�), then
cos f is negative and thus so is the work. (Can you see that the work is zero when
f � 90�?) These results lead to a simple rule. To find the sign of the work done by a
force,consider the force vector component that is parallel to the displacement:

d
:

F
:

F
:

.

W � F
:

� d
:
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Figure 7-3 A contestant in a bed race. We
can approximate the bed and its occupant
as being a particle for the purpose of cal-
culating the work done on them by the
force applied by the contestant.

F

A force does positive work when it has a vector component in the same direction
as the displacement, and it does negative work when it has a vector component in
the opposite direction. It does zero work when it has no such vector component.

Units for Work. Work has the SI unit of the joule, the same as kinetic energy.
However, from Eqs. 7-6 and 7-7 we can see that an equivalent unit is the newton-
meter (N �m). The corresponding unit in the British system is the foot-pound
(ft � lb). Extending Eq. 7-2, we have

1 J � 1 kg �m2/s2 � 1 N �m � 0.738 ft � lb. (7-9)

Net Work. When two or more forces act on an object, the net work done on
the object is the sum of the works done by the individual forces. We can
calculate the net work in two ways. (1) We can find the work done by each force
and then sum those works. (2) Alternatively, we can first find the net force 
of those forces. Then we can use Eq. 7-7, substituting the magnitude Fnet for F
and also the angle between the directions of and for f. Similarly, we can
use Eq. 7-8 with substituted for 

Work–Kinetic Energy Theorem
Equation 7-5 relates the change in kinetic energy of the bead (from an initial

to a later ) to the work W (� Fxd) done on the bead. ForKf � 1
2 mv2Ki � 1

2 mv2
0

F
:

.F
:

net

d
:

F
:

net

F
:

net

such particle-like objects, we can generalize that equation. Let �K be the change
in the kinetic energy of the object, and let W be the net work done on it.Then 

�K � Kf � Ki � W, (7-10)

which says that

We can also write

Kf � Ki � W, (7-11)

which says that

.� kinetic energy after
the net work is done� � � kinetic energy 

before the net work� � � the net
work done�

�change in the kinetic
energy of a particle � � �net work done on

the particle �.



done on the safe by the normal force from the floor?

KEY IDEA

Because these forces are constant in both magnitude and
direction, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

Wg � mgd cos 90� � mgd(0) � 0 (Answer)

and WN � FNd cos 90� � FNd(0) � 0. (Answer)

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed vf at the
end of the 8.50 m displacement?

KEY IDEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by and .F

:

2F
:

1

F
:

N

These statements are known traditionally as the work–kinetic energy theorem
for particles. They hold for both positive and negative work: If the net work done
on a particle is positive, then the particle’s kinetic energy increases by the amount
of the work. If the net work done is negative, then the particle’s kinetic energy
decreases by the amount of the work.

For example, if the kinetic energy of a particle is initially 5 J and there is a
net transfer of 2 J to the particle (positive net work), the final kinetic energy is
7 J. If, instead, there is a net transfer of 2 J from the particle (negative net work),
the final kinetic energy is 3 J.
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Checkpoint 1
A particle moves along an x axis. Does the kinetic energy of the particle increase, de-
crease, or remain the same if the particle’s velocity changes (a) from �3 m/s to �2 m/s
and (b) from �2 m/s to 2 m/s? (c) In each situation, is the work done on the particle
positive, negative, or zero?

Sample Problem 7.02 Work done by two constant forces, industrial spies

8.50 m. The push of spy 001 is 12.0 N at an angle of 30.0�
downward from the horizontal; the pull of spy 002 isF

:

2

F
:

1

Figure 7-4 (a) Two spies move a floor safe through a displacement
. (b) A free-body diagram for the safe.d

:

(a)

Safe

(b)

40.0°
30.0°

Spy 001 
Spy 002 

Fg

FN

F1

F2

d

Only force components
parallel to the displacement
do work.

(b) During the displacement, what is the work Wg done on the
safe by the gravitational force and what is the work WNF

:

g

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement of magnituded

:

10.0 N at 40.0� above the horizontal. The magnitudes and di-
rections of these forces do not change as the safe moves, and
the floor and safe make frictionless contact.

(a) What is the net work done on the safe by forces and 
during the displacement ?

KEY IDEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7 
(W � Fd cos f) or Eq. 7-8 to calculate those
works. Let’s choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by is

W1 � F1d cos f1 � (12.0 N)(8.50 m)(cos 30.0�)

� 88.33 J,

and the work done by is

W2 � F2d cos f2 � (10.0 N)(8.50 m)(cos 40.0�)

� 65.11 J.

Thus, the net work W is

W � W1 � W2 � 88.33 J � 65.11 J

� 153.4 J � 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies transfer
153 J of energy to the kinetic energy of the safe.

F
:

2

F
:

1

(W � F
:

� d
:

)

d
:

F
:

2F
:

1
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Calculations: We relate the speed to the work done by
combining Eqs. 7-10 (the work–kinetic energy theorem) and
7-1 (the definition of kinetic energy):

The initial speed vi is zero, and we now know that the work

W � Kf � Ki � 1
2 mvf

2 � 1
2 mvi

2.

done is 153.4 J. Solving for vf and then substituting known
data, we find that

(Answer)� 1.17 m/s.

vf � A
2W
m

� A
2(153.4 J)

225 kg

Sample Problem 7.03 Work done by a constant force in unit-vector notation

During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement 
while a steady wind pushes against the crate with a force

. The situation and coordinate
axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during
the displacement?

KEY IDEA

Because we can treat the crate as a particle and because the
wind force is constant (“steady”) in both magnitude and direc-
tion during the displacement, we can use either Eq. 7-7 (W �
Fd cos f) or Eq. 7-8 to calculate the work. Since
we know and in unit-vector notation, we choose Eq. 7-8.

Calculations: We write

Of the possible unit-vector dot products, only î � î, ĵ � ĵ, and
k̂ �k̂ are nonzero (see Appendix E). Here we obtain

W � (2.0 N)(�3.0 m)î � î � (�6.0 N)(�3.0 m)ĵ � î

� (�6.0 J)(1) � 0 � �6.0 J. (Answer)

W � F
:

� d
:

� [(2.0 N)î � (�6.0 N)ĵ] � [(�3.0 m)î].

d
:

F
:

(W � F
:

� d
:

)

(2.0 N)î � (�6.0 N)ĵF
:

�

d
:

� (�3.0 m)î

Figure 7-5 Force slows a
crate during displacement .d

:
F
:

y

x
F

d

The parallel force component does
negative work, slowing the crate.

Thus, the force does a negative 6.0 J of work on the crate, trans-
ferring 6.0 J of energy from the kinetic energy of the crate.

(b) If the crate has a kinetic energy of 10 J at the beginning
of displacement , what is its kinetic energy at the end of ?

KEY IDEA

Because the force does negative work on the crate, it re-
duces the crate’s kinetic energy.

Calculation: Using the work–kinetic energy theorem in
the form of Eq. 7-11, we have

Kf � Ki � W � 10 J � (�6.0 J) � 4.0 J. (Answer)

Less kinetic energy means that the crate has been slowed.

d
:

d
:

Additional examples, video, and practice available at WileyPLUS
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Learning Objectives

7.08 Apply the work–kinetic energy theorem to situations
where an object is lifted or lowered.

● The work Wg done by the gravitational force on a
particle-like object of mass m as the object moves through a
displacement is given by

Wg � mgd cos f,

in which f is the angle between and .

● The work Wa done by an applied force as a particle-like
object is either lifted or lowered is related to the work Wg

d
:

F
:

g

d
:

F
:

g done by the gravitational force and the change �K in the
object’s kinetic energy by

�K � Kf � Ki � Wa � Wg.

If Kf � Ki, then the equation reduces to

Wa � �Wg,

which tells us that the applied force transfers as much energy
to the object as the gravitational force transfers from it.

After reading this module, you should be able to . . . 

7.07 Calculate the work done by the gravitational force
when an object is lifted or lowered.

Key Ideas
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Work Done by the Gravitational Force
We next examine the work done on an object by the gravitational force acting on
it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with
initial speed v0 and thus with initial kinetic energy . As the tomatoKi � 1

2 mv2
0

Figure 7-6 Because the gravitational force 
acts on it, a particle-like tomato of mass m
thrown upward slows from velocity to
velocity during displacement . A kinetic
energy gauge indicates the resulting change
in the kinetic energy of the tomato, from

to .Kf (� 1
2 mv2)Ki (�

1
2 mv2

0)

d
:

v:
v:0

F
:

g

Kf

Ki

Fg

Fg

Fg

v0

v

d

The force does negative
work, decreasing speed
and kinetic energy.

rises, it is slowed by a gravitational force ; that is, the tomato’s kinetic energyF
:

g
decreases because does work on the tomato as it rises. Because we can treatF

:

g

Figure 7-7 (a) An applied force lifts an
object. The object’s displacement makes
an angle f � 180� with the gravitational
force on the object. The applied force
does positive work on the object. (b) An
applied force lowers an object. The dis-
placement of the object makes an angle
f with the gravitational force . The
applied force does negative work on the
object.

F
:

g� 0�
d
:

F
:

F
:

g

d
:

F
:

(Fig. 7-7a), then f � 180� and the work done by the applied force equals mgd.

the tomato as a particle, we can use Eq. 7-7 (W � Fd cos f) to express the work
done during a displacement . For the force magnitude F, we use mg as the mag-
nitude of F

:

g.Thus, the work Wg done by the gravitational force F
:

g is

Wg � mgd cos f (work done by gravitational force). (7-12)

For a rising object, force F
:

g is directed opposite the displacement , as indi-
cated in Fig. 7-6.Thus, f � 180� and

Wg � mgd cos 180� � mgd(�1) � �mgd. (7-13)

The minus sign tells us that during the object’s rise, the gravitational force acting
on the object transfers energy in the amount mgd from the kinetic energy of the
object.This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down,
the angle f between force and displacement is zero.Thus,

Wg � mgd cos 0� � mgd(�1) � �mgd. (7-14)

The plus sign tells us that the gravitational force now transfers energy in the amount
mgd to the kinetic energy of the falling object (it speeds up, of course).

Work Done in Lifting and Lowering an Object
Now suppose we lift a particle-like object by applying a vertical force to it.
During the upward displacement, our applied force does positive work Wa on the
object while the gravitational force does negative work Wg on it. Our applied
force tends to transfer energy to the object while the gravitational force tends to
transfer energy from it. By Eq. 7-10, the change �K in the kinetic energy of the
object due to these two energy transfers is

�K � Kf � Ki � Wa � Wg, (7-15)

in which Kf is the kinetic energy at the end of the displacement and Ki is that at
the start of the displacement. This equation also applies if we lower the object,
but then the gravitational force tends to transfer energy to the object while our
force tends to transfer energy from it.

If an object is stationary before and after a lift (as when you lift a book from
the floor to a shelf), then Kf and Ki are both zero, and Eq. 7-15 reduces to

Wa � Wg � 0

or Wa � �Wg. (7-16)

Note that we get the same result if Kf and Ki are not zero but are still equal.
Either way, the result means that the work done by the applied force is the nega-
tive of the work done by the gravitational force; that is, the applied force transfers
the same amount of energy to the object as the gravitational force transfers from
the object. Using Eq. 7-12, we can rewrite Eq. 7-16 as

Wa � �mgd cos f (work done in lifting and lowering; Kf � Ki), (7-17)

with f being the angle between and . If the displacement is vertically upwardd
:

F
:

g
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d
:
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If the displacement is vertically downward (Fig. 7-7b), then f � 0� and the work
done by the applied force equals �mgd.

Equations 7-16 and 7-17 apply to any situation in which an object is lifted or
lowered, with the object stationary before and after the lift.They are independent
of the magnitude of the force used. For example, if you lift a mug from the floor
to over your head, your force on the mug varies considerably during the lift. Still,
because the mug is stationary before and after the lift, the work your force does
on the mug is given by Eqs. 7-16 and 7-17, where, in Eq. 7-17, mg is the weight of
the mug and d is the distance you lift it.

The angle f between the displacement and this force com-
ponent is 180�. So we can apply Eq. 7-7 to write

Sample Problem 7.04 Work in pulling a sleigh up a snowy slope

In this problem an object is pulled along a ramp but the ob-
ject starts and ends at rest and thus has no overall change in
its kinetic energy (that is important). Figure 7-8a shows the
situation. A rope pulls a 200 kg sleigh (which you may know)
up a slope at incline angle u � 30�, through distance d � 20 m.
The sleigh and its contents have a total mass of 200 kg. The
snowy slope is so slippery that we take it to be frictionless.
How much work is done by each force acting on the sleigh?

KEY IDEAS

(1) During the motion, the forces are constant in magnitude
and direction and thus we can calculate the work done by
each with Eq. 7-7 (W � Fd cos f) in which f is the angle be-
tween the force and the displacement. We reach the same
result with Eq. 7-8 (W � � ) in which we take a dot prod-
uct of the force vector and displacement vector. (2) We can
relate the net work done by the forces to the change in
kinetic energy (or lack of a change, as here) with the
work–kinetic energy theorem of Eq. 7-10 (�K � W).

Calculations: The first thing to do with most physics prob-
lems involving forces is to draw a free-body diagram to organ-
ize our thoughts. For the sleigh, Fig.7-8b is our free-body dia-
gram, showing the gravitational force , the force from theT

:
F
:

g

d
:

F
:

rope, and the normal force from the slope.

Work WN by the normal force. Let’s start with this easy cal-
culation. The normal force is perpendicular to the slope and
thus also to the sleigh’s displacement.Thus the normal force
does not affect the sleigh’s motion and does zero work. To
be more formal, we can apply Eq. 7-7 to write

WN � FNd cos 90� � 0. (Answer)

Work Wg by the gravitational force. We can find the work
done by the gravitational force in either of two ways (you
pick the more appealing way). From an earlier discussion
about ramps (Sample Problem 5.04 and Fig. 5-15), we know
that the component of the gravitational force along the
slope has magnitude mg sin u and is directed down the
slope.Thus the magnitude is

Fgx � mg sin u � (200 kg)(9.8 m/s2) sin 30�

� 980 N.

FN
:

Wg � Fgxd cos 180� � (980 N)(20 m)(�1)

Figure 7-8 (a) A sleigh is pulled up a snowy slope. (b) The free-
body diagram for the sleigh.

θ

d

FN

T

Fg

mg cosu

mg sinu

(b)

(a)

u

Does
positive workDoes negative work

x

��1.96 � 104 J. (Answer)

The negative result means that the gravitational force re-
moves energy from the sleigh.

The second (equivalent) way to get this result is to use
the full gravitational force instead of a component. TheF

:

g

angle between and is 120� (add the incline angle 30�d
:

F
:

g

to 90�). So, Eq. 7-7 gives us

Wg � Fgd cos 120� � mgd cos 120�

� (200 kg)(9.8 m/s2)(20 m) cos 120�

��1.96 � 104 J. (Answer)

Work WT by the rope’s force. We have two ways of calculat-
ing this work. The quickest way is to use the work–kinetic en-
ergy theorem of Eq. 7-10 (�K � W), where the net work W
done by the forces is WN � Wg � WT and the change �K in the
kinetic energy is just zero (because the initial and final kinetic
energies are the same—namely, zero). So, Eq. 7-10 gives us

0 � WN � Wg � WT � 0 � 1.96 � 104 J � WT

and WT � 1.96 � l04 J. (Answer)
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Sample Problem 7.05 Work done on an accelerating elevator cab

An elevator cab of mass m � 500 kg is descending with speed
vi � 4.0 m/s when its supporting cable begins to slip, allowing
it to fall with constant acceleration (Fig. 7-9a).

(a) During the fall through a distance d � 12 m, what is the
work Wg done on the cab by the gravitational force ?

KEY IDEA

We can treat the cab as a particle and thus use Eq. 7-12 
(Wg � mgd cos f) to find the work Wg.

Calculation: From Fig. 7-9b, we see that the angle between
the directions of F

:

g and the cab’s displacement is 0�. So,

Wg � mgd cos 0� � (500 kg)(9.8 m/s2)(12 m)(1)

� 5.88 � 104 J � 59 kJ. (Answer)

(b) During the 12 m fall, what is the work WT done on the
cab by the upward pull of the elevator cable?

KEY IDEA

We can calculate work WT with Eq. 7-7 (W � Fd cos f)  by
first writing Fnet,y � may for the components in Fig. 7-9b.

Calculations: We get

T � Fg � ma. (7-18)

Solving for T, substituting mg for Fg, and then substituting
the result in Eq. 7-7, we obtain

WT � Td cos f � m(a � g)d cos f. (7-19)

Next, substituting �g/5 for the (downward) acceleration a
and then 180� for the angle f between the directions of
forces and , we find

(Answer)� �4.70 � 10 4 J � �47 kJ.

�
4
5

 (500 kg)(9.8 m/s2)(12 m) cos 180�

WT � m��
g
5

� g� d cos � �
4
5

mgd cos �

mg:T
:

T
:

d
:

F
:

g

a: � g:/5
Figure 7-9 An elevator
cab, descending with
speed vi, suddenly 
begins to accelerate
downward. (a) It
moves through a dis-
placement with
constant acceleration

(b) A free-
body diagram for the
cab, displacement
included.

a: � g:/5.

d
:

Caution: Note that WT is not simply the negative of Wg be-
cause the cab accelerates during the fall. Thus, Eq. 7-16
(which assumes that the initial and final kinetic energies are
equal) does not apply here.

(c) What is the net work W done on the cab during the fall?

Calculation: The net work is the sum of the works done by
the forces acting on the cab:

W � Wg � WT � 5.88 � 104 J � 4.70 � 104 J

� 1.18 � 104 J � 12 kJ. (Answer)

(d) What is the cab’s kinetic energy at the end of the 12 m fall?

KEY IDEA

The kinetic energy changes because of the net work done on
the cab, according to Eq. 7-11 (Kf � Ki � W).

Calculation: From Eq. 7-1, we write the initial kinetic
energy as .We then write Eq. 7-11 as

(Answer)� 1.58 � 104 J � 16 kJ.

� 1
2(500 kg)(4.0 m/s)2 � 1.18 � 104 J

Kf � Ki � W � 1
2 mvi

2 � W

Ki � 1
2mvi

2

Additional examples, video, and practice available at WileyPLUS

Instead of doing this, we can apply Newton’s second law for
motion along the x axis to find the magnitude FT of the rope’s
force. Assuming that the acceleration along the slope is zero
(except for the brief starting and stopping), we can write

Fnet,x � max,

FT � mg sin 30� � m(0),
to find

FT � mg sin 30�.

This is the magnitude. Because the force and the displace-
ment are both up the slope, the angle between those two
vectors is zero. So, we can now write Eq. 7-7 to find the work
done by the rope’s force:

WT � FTd cos 0� � (mg sin 30�)d cos 0�

� (200 kg)(9.8 m/s2)(sin 30�)(20 m) cos 0�

� 1.96 � 104 J. (Answer)

Elevator
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Cab

(b)(a)

a

d
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Work Done by a Spring Force
We next want to examine the work done on a particle-like object by a particular
type of variable force—namely, a spring force, the force from a spring. Many
forces in nature have the same mathematical form as the spring force. Thus, by
examining this one force, you can gain an understanding of many others.

The Spring Force
Figure 7-10a shows a spring in its relaxed state—that is, neither compressed nor
extended. One end is fixed, and a particle-like object—a block, say—is attached
to the other, free end. If we stretch the spring by pulling the block to the right as
in Fig. 7-10b, the spring pulls on the block toward the left. (Because a spring
force acts to restore the relaxed state, it is sometimes said to be a restoring force.)
If we compress the spring by pushing the block to the left as in Fig. 7-10c, the
spring now pushes on the block toward the right.

To a good approximation for many springs, the force from a spring is pro-
portional to the displacement of the free end from its position when the spring
is in the relaxed state.The spring force is given by

(Hooke’s law), (7-20)

which is known as Hooke’s law after Robert Hooke, an English scientist of the
late 1600s. The minus sign in Eq. 7-20 indicates that the direction of the spring
force is always opposite the direction of the displacement of the spring’s free end.
The constant k is called the spring constant (or force constant) and is a measure
of the stiffness of the spring.The larger k is, the stiffer the spring; that is, the larger
k is, the stronger the spring’s pull or push for a given displacement.The SI unit for
k is the newton per meter.

In Fig. 7-10 an x axis has been placed parallel to the length of the spring, with
the origin (x � 0) at the position of the free end when the spring is in its relaxed

F
:

s � �kd
:

d
:

F
:

s

7-4 WORK DONE BY A SPRING FORCE
Learning Objectives

position of the object or by using the known generic result
of that integration.

7.12 Calculate work by graphically integrating on a graph of
force versus position of the object.

7.13 Apply the work–kinetic energy theorem to situations in
which an object is moved by a spring force.

● The force from a spring is

(Hooke’s law),

where is the displacement of the spring’s free end from
its position when the spring is in its relaxed state (neither
compressed nor extended), and k is the spring constant 
(a measure of the spring’s stiffness). If an x axis lies along the
spring, with the origin at the location of the spring’s free end
when the spring is in its relaxed state, we can write

Fx � �kx (Hooke’s law).

d
:

F
:

s � �kd
:

F
:

s ● A spring force is thus a variable force: It varies with the
displacement of the spring’s free end.

● If an object is attached to the spring’s free end, the work Ws

done on the object by the spring force when the object is
moved from an initial position xi to a final position xf is

If xi � 0 and xf � x, then the equation becomes

Ws � �1
2 kx2.

Ws � 1
2 kxi

2 � 1
2 kxf

2.

After reading this module, you should be able to . . . 

7.09 Apply the relationship (Hooke’s law) between the force
on an object due to a spring, the stretch or compression
of the spring, and the spring constant of the spring.

7.10 Identify that a spring force is a variable force.
7.11 Calculate the work done on an object by a spring force

by integrating the force from the initial position to the final

Key Ideas

Figure 7-10 (a) A spring in its relaxed state.
The origin of an x axis has been placed at
the end of the spring that is attached to a
block. (b) The block is displaced by , and
the spring is stretched by a positive amount
x. Note the restoring force exerted by
the spring. (c) The spring is compressed by
a negative amount x. Again, note the
restoring force.
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d
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0
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x

x
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x = 0
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x positive
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state. For this common arrangement, we can write Eq. 7-20 as

Fx � �kx (Hooke’s law), (7-21)

where we have changed the subscript. If x is positive (the spring is stretched
toward the right on the x axis), then Fx is negative (it is a pull toward the left). If
x is negative (the spring is compressed toward the left), then Fx is positive (it is a
push toward the right). Note that a spring force is a variable force because it is a
function of x, the position of the free end.Thus Fx can be symbolized as F(x).Also
note that Hooke’s law is a linear relationship between Fx and x.

The Work Done by a Spring Force
To find the work done by the spring force as the block in Fig. 7-10a moves, let us
make two simplifying assumptions about the spring. (1) It is massless; that is, its
mass is negligible relative to the block’s mass. (2) It is an ideal spring; that is, it
obeys Hooke’s law exactly. Let us also assume that the contact between the block
and the floor is frictionless and that the block is particle-like.

We give the block a rightward jerk to get it moving and then leave it alone.
As the block moves rightward, the spring force Fx does work on the block,
decreasing the kinetic energy and slowing the block. However, we cannot find this
work by using Eq. 7-7 (W � Fd cos f) because there is no one value of F to plug
into that equation—the value of F increases as the block stretches the spring.

There is a neat way around this problem. (1) We break up the block’s dis-
placement into tiny segments that are so small that we can neglect the variation
in F in each segment. (2) Then in each segment, the force has (approximately) a
single value and thus we can use Eq. 7-7 to find the work in that segment. (3)
Then we add up the work results for all the segments to get the total work. Well,
that is our intent, but we don’t really want to spend the next several days adding
up a great many results and, besides, they would be only approximations. Instead,
let’s make the segments infinitesimal so that the error in each work result goes to
zero. And then let’s add up all the results by integration instead of by hand.
Through the ease of calculus, we can do all this in minutes instead of days.

Let the block’s initial position be xi and its later position be xf. Then divide
the distance between those two  positions into many segments, each of tiny length
�x. Label these segments, starting from xi, as segments 1, 2, and so on. As the
block moves through a segment, the spring force hardly varies because the seg-
ment is so short that x hardly varies. Thus, we can approximate the force magni-
tude as being constant within the segment. Label these magnitudes as Fx1 in
segment 1, Fx2 in segment 2, and so on.

With the force now constant in each segment, we can find the work done
within each segment by using Eq. 7-7. Here f � 180�, and so cos f � �1. Then
the work done is �Fx1 �x in segment 1, �Fx2 �x in segment 2, and so on. The net
work Ws done by the spring, from xi to xf, is the sum of all these works:

(7-22)

where j labels the segments. In the limit as �x goes to zero, Eq. 7-22 becomes

(7-23)

From Eq. 7-21, the force magnitude Fx is kx.Thus, substitution leads to

(7-24)� (�1
2k)[x2]xi

xf � (�1
2 k)(xf

2 � xi
2).

Ws � �xf

xi

�kx dx � �k �xf

xi

x dx

Ws � �xf

xi

�Fx dx.

Ws � � �Fxj �x,
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Caution: If the block is not stationary before and after the displacement, then this
statement is not true.

Work Ws is positive if the block ends up closer to the relaxed position (x � 0) than
it was initially. It is negative if the block ends up farther away from x � 0. It is zero
if the block ends up at the same distance from x � 0.

If xi � 0 and if we call the final position x, then Eq. 7-25 becomes

(work by a spring force). (7-26)

The Work Done by an Applied Force
Now suppose that we displace the block along the x axis while continuing to apply a
force to it. During the displacement, our applied force does work Wa on the blockF

:

a

Ws � �1
2 kx2

7-4 WORK DONE BY A SPRING FORCE

If a block that is attached to a spring is stationary before and after a displacement,
then the work done on it by the applied force displacing it is the negative of the
work done on it by the spring force.

Checkpoint 2
For three situations, the initial and final positions, respectively, along the x axis for the
block in Fig. 7-10 are (a) �3 cm, 2 cm; (b) 2 cm, 3 cm; and (c) �2 cm, 2 cm. In each sit-
uation, is the work done by the spring force on the block positive, negative, or zero?

Sample Problem 7.06 Work done by a spring to change kinetic energy

When a spring does work on an object, we cannot find the
work by simply multiplying the spring force by the object’s
displacement. The reason is that there is no one value for
the force—it changes. However, we can split the displace-
ment up into an infinite number of tiny parts and then ap-
proximate the force in each as being constant. Integration
sums the work done in all those parts. Here we use the
generic result of the integration.

In Fig. 7-11, a cumin canister of mass m � 0.40 kg slides
across a horizontal frictionless counter with speed v � 0.50 m/s.

Multiplied out, this yields

(work by a spring force). (7-25)

This work Ws done by the spring force can have a positive or negative value,
depending on whether the net transfer of energy is to or from the block as the
block moves from xi to xf. Caution: The final position xf appears in the second
term on the right side of Eq. 7-25.Therefore, Eq. 7-25 tells us:

Ws � 1
2 kxi

2 � 1
2 kxf

2

Figure 7-11 A canister moves toward a spring.

k
mFrictionless

First touchStop

v

d

The spring force does
negative work, decreasing
speed and kinetic energy.

while the spring force does work Ws. By Eq. 7-10, the change �K in the kinetic en-
ergy of the block due to these two energy transfers is

�K � Kf � Ki � Wa � Ws, (7-27)

in which Kf is the kinetic energy at the end of the displacement and Ki is that at
the start of the displacement. If the block is stationary before and after the dis-
placement, then Kf and Ki are both zero and Eq. 7-27 reduces to

Wa � �Ws. (7-28)
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Work Done by a General Variable Force
One-Dimensional Analysis
Let us return to the situation of Fig. 7-2 but now consider the force to be in the
positive direction of the x axis and the force magnitude to vary with position x.
Thus, as the bead (particle) moves, the magnitude F(x) of the force doing work on
it changes. Only the magnitude of this variable force changes, not its direction,
and the magnitude at any position does not change with time.

7-5 WORK DONE BY A GENERAL VARIABLE FORCE

After reading this module, you should be able to . . .

7.14 Given a variable force as a function of position, calculate
the work done by it on an object by integrating the function
from the initial to the final position of the object, in one or
more dimensions.

7.15 Given a graph of force versus position, calculate the
work done by graphically integrating from the initial
position to the final position of the object.

7.16 Convert a graph of acceleration versus position to a
graph of force versus position.

7.17 Apply the work–kinetic energy theorem to situations
where an object is moved by a variable force.

Learning Objectives

● When the force on a particle-like object depends on
the position of the object, the work done by on the ob-
ject while the object moves from an initial position ri with
coordinates (xi, yi, zi) to a final position rf with coordinates
(xf, yf, zf) must be found by integrating the force. If we as-
sume that component Fx may depend on x but not on y or
z, component Fy may depend on y but not on x or z, and
component Fz may depend on z but not on x or y, then the

F
:

F
: work is

● If has only an x component, then this reduces to

W � �xf

xi

F(x) dx.

F
:

W � �xf

xi

Fx dx � �yf

yi

Fy dy � �zf

zi

Fz dz.

Key Ideas

Additional examples, video, and practice available at WileyPLUS

It then runs into and compresses a spring of spring constant
k � 750 N/m. When the canister is momentarily stopped by
the spring, by what distance d is the spring compressed?

KEY IDEAS

1. The work Ws done on the canister by the spring force is
related to the requested distance d by Eq. 7-26 (Ws �

, with d replacing x.

2. The work Ws is also related to the kinetic energy of the
canister by Eq. 7-10 (Kf � Ki � W).

3. The canister’s kinetic energy has an initial value of K �
and a value of zero when the canister is momen-

tarily at rest.

1
2 mv2

�1
2 kx2)

Calculations: Putting the first two of these ideas together,
we write the work–kinetic energy theorem for the canister as

Substituting according to the third key idea gives us this
expression:

Simplifying, solving for d, and substituting known data then
give us

(Answer)� 1.2 � 10�2 m � 1.2 cm.

d � vA
m
k

� (0.50 m/s)A
0.40 kg

750 N/m

0 � 1
2 mv2 � �1

2 kd 2.

Kf � Ki � �1
2 kd 2.
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Figure 7-12 (a) A one-dimensional force
plotted against the displacement x of

a particle on which it acts. The particle
moves from xi to xf. (b) Same as (a) but
with the area under the curve divided into
narrow strips. (c) Same as (b) but with the
area divided into narrower strips. (d) The
limiting case. The work done by the force
is given by Eq. 7-32 and is represented by
the shaded area between the curve and
the x axis and between xi and xf.

F
:
(x)

Figure 7-12a shows a plot of such a one-dimensional variable force. We want
an expression for the work done on the particle by this force as the particle
moves from an initial point xi to a final point xf. However, we cannot use Eq. 7-7
(W � Fd cos f) because it applies only for a constant force . Here, again, we
shall use calculus. We divide the area under the curve of Fig. 7-12a into a number
of narrow strips of width �x (Fig. 7-12b).We choose �x small enough to permit us
to take the force F(x) as being reasonably constant over that interval.We let Fj,avg

be the average value of F(x) within the jth interval. Then in Fig. 7-12b, Fj,avg is the
height of the jth strip.

With Fj,avg considered constant, the increment (small amount) of work
�Wj done by the force in the jth interval is now approximately given by Eq.
7-7 and is

�Wj � Fj,avg �x. (7-29)

In Fig. 7-12b, �Wj is then equal to the area of the jth rectangular, shaded strip.
To approximate the total work W done by the force as the particle moves

from xi to xf, we add the areas of all the strips between xi and xf in Fig. 7-12b:

W � � �x. (7-30)

Equation 7-30 is an approximation because the broken “skyline” formed by the tops
of the rectangular strips in Fig. 7-12b only approximates the actual curve of F(x).

We can make the approximation better by reducing the strip width �x and
using more strips (Fig. 7-12c). In the limit, we let the strip width approach
zero; the number of strips then becomes infinitely large and we have, as an ex-
act result,

(7-31)

This limit is exactly what we mean by the integral of the function F(x) between
the limits xi and xf.Thus, Eq. 7-31 becomes

(work: variable force). (7-32)

If we know the function F(x), we can substitute it into Eq. 7-32, introduce the
proper limits of integration, carry out the integration, and thus find the work.
(Appendix E contains a list of common integrals.) Geometrically, the work is
equal to the area between the F(x) curve and the x axis, between the limits xi and
xf (shaded in Fig. 7-12d).

Three-Dimensional Analysis
Consider now a particle that is acted on by a three-dimensional force

� Fx � Fy � Fz , (7-33)

in which the components Fx, Fy, and Fz can depend on the position of the particle;
that is, they can be functions of that position. However, we make three simplifica-
tions: Fx may depend on x but not on y or z, Fy may depend on y but not on x or z,
and Fz may depend on z but not on x or y. Now let the particle move through an in-
cremental displacement

� dx � dy � dz . (7-34)

The increment of work dW done on the particle by during the displacement 
is, by Eq. 7-8,

(7-35)dW � F
:

� dr: � Fx dx � Fy dy � Fz dz.

dr:F
:

k̂ĵîdr:

k̂ĵîF
:

W � �xf

xi

F(x) dx

W � lim
�x : 0

�Fj,avg �x.

�Fj,avg��Wj

F
: F(x)

xxi xf0
(a)

Work is equal to the
area under the curve.

F(x)

xxi xf

Fj, avg

Δ   x
0

(b)

ΔWj

We can approximate that area 
with the area of these strips.

F(x)

xxi xf0
Δ   x(c)

We can do better with
more, narrower strips.

F(x)

xxi xf0

W

(d)

For the best, take the limit of 
strip widths going to zero.
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Sample Problem 7.07 Work calculated by graphical integration

In Fig. 7-13b, an 8.0 kg block slides along a frictionless floor
as a force acts on it, starting at x1 � 0 and ending at x3 � 6.5 m.
As the block moves, the magnitude and direction of the
force varies according to the graph shown in Fig. 7-13a. For

The work W done by while the particle moves from an initial position ri having
coordinates (xi, yi, zi) to a final position rf having coordinates (xf, yf, zf) is then

(7-36)

If has only an x component, then the y and z terms in Eq. 7-36 are zero and the
equation reduces to Eq. 7-32.

Work–Kinetic Energy Theorem with a Variable Force
Equation 7-32 gives the work done by a variable force on a particle in a one-
dimensional situation. Let us now make certain that the work is equal to the
change in kinetic energy, as the work–kinetic energy theorem states.

Consider a particle of mass m, moving along an x axis and acted on by a
net force F(x) that is directed along that axis. The work done on the particle
by this force as the particle moves from position xi to position xf is given by
Eq. 7-32 as

(7-37)

in which we use Newton’s second law to replace F(x) with ma. We can write the
quantity ma dx in Eq. 7-37 as

(7-38)

From the chain rule of calculus, we have

(7-39)

and Eq. 7-38 becomes

(7-40)

Substituting Eq. 7-40 into Eq. 7-37 yields

(7-41)

Note that when we change the variable from x to v we are required to express the
limits on the integral in terms of the new variable. Note also that because the
mass m is a constant, we are able to move it outside the integral.

Recognizing the terms on the right side of Eq. 7-41 as kinetic energies allows
us to write this equation as

W � Kf � Ki � �K,

which is the work–kinetic energy theorem.

� 1
2 mvf

2 � 1
2 mvi

2.

W � �vf

vi

mv dv � m �vf

vi

v dv

ma dx � m
dv
dx

v dx � mv dv.

dv
dt

�
dv
dx

dx
dt

�
dv
dx

v,

ma dx � m
dv
dt

dx.

W � �xf

xi

F(x) dx � �xf

xi

ma dx,

F
:

W � �rf

ri

dW � �xf

xi

Fx dx � �yf

yi

Fy dy � �zf

zi

Fz dz.

F
:

example, from x � 0 to x � 1 m, the force is positive (in
the positive direction of the x axis) and increases in mag-
nitude from 0 to 40 N. And from x � 4 m to x � 5 m, the
force is negative and increases in magnitude from 0 to 20 N.
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Additional examples, video, and practice available at WileyPLUS

2
0

�20

40

4 6

20 4 6

x (m)

x (m)

F (N)

(a)

(b)

v1 v2 v3
F F

Figure 7-13 (a) A graph indicating the magnitude and direction of a
variable force that acts on a block as it moves along an x axis on
a floor, (b) The location of the block at several times.

Again using the definition of kinetic energy, we find

and then

(Answer)

This is the block’s greatest speed because from x � 4.0 m to
x � 6.5 m the force is negative, meaning that it opposes the
block’s motion, doing negative work on the block and thus
decreasing the kinetic energy and speed. In that range, the
area between the plot and the x axis is

This means that the work done by the force in that range is
�35 J. At x � 4.0, the block has K � 400 J. At x � 6.5 m, the
work–kinetic energy theorem tells us that its kinetic energy is

Again using the definition of kinetic energy, we find

and then

(Answer)

The block is still moving in the positive direction of the
x axis, a bit faster than initially.

v3 � 9.55 m/s � 9.6 m/s.

365 J � 1
2(8.0 kg)v2

3,

K3 � 1
2mv2

3,

� 400 J � 35 J � 365 J.

K3 � K2 � W

� 35 J.

1
2(20 N)(1 m) � (20 N)(1 m) � 1

2(20 N)(0.5 m) � 35 N�m

v2 � 10 m/s.

 400 J � 1
2(8.0 kg)v2

2,

K2 � 1
2mv2

2,

(Note that this latter value is displayed as �20 N.) The
block’s kinetic energy at x1 is K1 � 280 J. What is the
block’s speed at x1 � 0, x2 � 4.0 m, and x3 � 6.5 m?

KEY IDEAS

(1) At any point, we can relate the speed of the block to its
kinetic energy with Eq. 7-1 (2) We can relate
the kinetic energy Kf at a later point to the initial kinetic Ki

and the work W done on the block by using the work–
kinetic energy theorem of Eq. 7-10 (Kf � Ki � W). (3) We
can calculate the work W done by a variable force F(x) by
integrating the force versus position x. Equation 7-32 tells
us that

We don’t have a function F(x) to carry out the integration,
but we do have a graph of F(x) where we can integrate by
finding the area between the plotted line and the x axis.
Where the plot is above the axis, the work (which is equal to
the area) is positive. Where it is below the axis, the work is
negative.

Calculations: The requested speed at x � 0 is easy because
we already know the kinetic energy. So, we just plug the 
kinetic energy into the formula for kinetic energy:

and then

(Answer)

As the block moves from x � 0 to x � 4.0 m, the plot in
Figure 7-13a is above the x axis, which means that positive
work is being done on the block. We split the area under the
plot into a triangle at the left, a rectangle in the center, and a
triangle at the right.Their total area is

This means that between x � 0 and x � 4.0 m, the force
does 120 J of work on the block, increasing the kinetic en-
ergy and speed of the block. So, when the block reaches
x � 4.0 m, the work–kinetic energy theorem tells us that
the kinetic energy is

� 280 J � 120 J � 400 J.

K2 � K1 � W

� 120 J.

1
2(40 N)(1 m) � (40 N)(2 m) � 1

2(40 N)(1 m) � 120 N�m

v1 � 8.37 m/s � 8.4 m/s.

 280 J � 1
2(8.0 kg)v2

1,

K1 � 1
2mv2

1,

W � �xf

xi

F(x) dx.

(K � 1
2mv2).
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KEY IDEA

The force is a variable force because its x component de-
pends on the value of x. Thus, we cannot use Eqs. 7-7 and 7-8
to find the work done. Instead, we must use Eq. 7-36 to inte-
grate the force.

Calculation: We set up two integrals, one along each axis:

(Answer)

The positive result means that energy is transferred to the
particle by force . Thus, the kinetic energy of the particle
increases and, because , its speed must also
increase. If the work had come out negative, the kinetic
energy and speed would have decreased.

K � 1
2mv2

F
:

� 7.0 J.

� 3[1
3x

3]2
3 � 4[y]3

0 � [33 � 23] � 4[0 � 3]

W � �3

2
3x2 dx � �0

3
 4 dy � 3 �3

2
x2 dx � 4 �0

3
dy

Sample Problem 7.08 Work, two-dimensional integration

When the force on an object depends on the position of the
object, we cannot find the work done by it on the object by
simply multiplying the force by the displacement. The rea-
son is that there is no one value for the force—it changes.
So, we must find the work in tiny little displacements and
then add up all the work results.We effectively say,“Yes, the
force varies over any given tiny little displacement, but the
variation is so small we can approximate the force as being
constant during the displacement.” Sure, it is not precise, but
if we make the displacements infinitesimal, then our error
becomes infinitesimal and the result becomes precise. But,
to add an infinite number of work contributions by hand
would take us forever, longer than a semester. So, we add
them up via an integration, which allows us to do all this in
minutes (much less than a semester).

Force � (3x2 N) � (4 N) , with x in meters, acts on a
particle, changing only the kinetic energy of the particle.
How much work is done on the particle as it moves from co-
ordinates (2 m, 3 m) to (3 m, 0 m)? Does the speed of the
particle increase, decrease, or remain the same?

ĵîF
:

Additional examples, video, and practice available at WileyPLUS

7-6 POWER
Learning Objectives

7.20 Determine the instantaneous power by taking a dot
product of the force vector and an object’s velocity vector,
in magnitude-angle and unit-vector notations.

● The power due to a force is the rate at which that force
does work on an object.

● If the force does work W during a time interval �t, the aver-
age power due to the force over that time interval is

Pavg �
W
�t

.

● Instantaneous power is the instantaneous rate of doing work:

● For a force at an angle f to the direction of travel of the
instantaneous velocity , the instantaneous power is

.P � Fv cos � � F
:

� v:
v:

F
:

P �
dW
dt

.

After reading this module, you should be able to . . . 

7.18 Apply the relationship between average power, the
work done by a force, and the time interval in which that
work is done.

7.19 Given the work as a function of time, find the instanta-
neous power.

Key Ideas

Power
The time rate at which work is done by a force is said to be the power due to the
force. If a force does an amount of work W in an amount of time �t, the average
power due to the force during that time interval is

(average power). (7-42)Pavg �
W
�t
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The instantaneous power P is the instantaneous time rate of doing work, which
we can write as

(instantaneous power). (7-43)

Suppose we know the work W(t) done by a force as a function of time. Then to
get the instantaneous power P at, say, time t � 3.0 s during the work, we would
first take the time derivative of W(t) and then evaluate the result for t � 3.0 s.

The SI unit of power is the joule per second.This unit is used so often that it
has a special name, the watt (W), after James Watt, who greatly improved the
rate at which steam engines could do work. In the British system, the unit of
power is the foot-pound per second. Often the horsepower is used. These are
related by

1 watt � 1 W � 1 J/s � 0.738 ft � lb/s (7-44)

and 1 horsepower � 1 hp � 550 ft � lb/s � 746 W. (7-45)

Inspection of Eq. 7-42 shows that work can be expressed as power multiplied
by time, as in the common unit kilowatt-hour.Thus,

1 kilowatt-hour � 1 kW �h � (103 W)(3600 s)

� 3.60 � 106 J � 3.60 MJ. (7-46)

Perhaps because they appear on our utility bills, the watt and the kilowatt-hour
have become identified as electrical units. They can be used equally well as units
for other examples of power and energy. Thus, if you pick up a book from the
floor and put it on a tabletop, you are free to report the work that you have done
as, say, 4 � 10�6 kW �h (or more conveniently as 4 mW �h).

We can also express the rate at which a force does work on a particle (or
particle-like object) in terms of that force and the particle’s velocity. For a par-
ticle that is moving along a straight line (say, an x axis) and is acted on by a
constant force directed at some angle f to that line, Eq. 7-43 becomes

or P � Fv cos f. (7-47)

Reorganizing the right side of Eq. 7-47 as the dot product we may also write
the equation as

(instantaneous power). (7-48)

For example, the truck in Fig. 7-14 exerts a force on the trailing load, which
has velocity at some instant. The instantaneous power due to is the rate at
which does work on the load at that instant and is given by Eqs. 7-47 and 7-48.
Saying that this power is “the power of the truck” is often acceptable, but keep in
mind what is meant: Power is the rate at which the applied force does work.

F
:

F
:

v:
F
:

P � F
:

� v:

F
:

� v:,

P �
dW
dt

�
F cos f dx

dt
� F cos f � dx

dt �,

F
:

P �
dW
dt

7-6 POWER

Figure 7-14 The power due to the truck’s
applied force on the trailing load is the
rate at which that force does work on the
load.

© Reglain/ZUMA

Checkpoint 3
A block moves with uniform circular motion because a cord tied to the block is an-
chored at the center of a circle. Is the power due to the force on the block from the
cord positive, negative, or zero?
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Calculation: We use Eq. 7-47 for each force. For force , at
angle f1 � 180	 to velocity , we have

P1 � F1v cos f1 � (2.0 N)(3.0 m/s) cos 180	

� �6.0 W. (Answer)

This negative result tells us that force is transferring en-
ergy from the box at the rate of 6.0 J/s.

For force , at angle f2 � 60	 to velocity , we have

P2 � F2v cos f2 � (4.0 N)(3.0 m/s) cos 60	

� 6.0 W. (Answer)

This positive result tells us that force is transferring en-
ergy to the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers
(complete with their algebraic signs):

Pnet � P1 � P2

� �6.0 W � 6.0 W � 0, (Answer)

which tells us that the net rate of transfer of energy to
or from the box is zero.Thus, the kinetic energy 
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces and nor the
velocity changing, we see from Eq. 7-48 that P1 and P2 are
constant and thus so is Pnet.

v:
F
:

2F
:

1

(K � 1
2 mv2)

F
:

2

v:F
:

2

F
:

1

v:
F
:

1

Sample Problem 7.09 Power, force, and velocity

Here we calculate an instantaneous work—that is, the rate at
which work is being done at any given instant rather than av-
eraged over a time interval. Figure 7-15 shows constant forces

and acting on a box as the box slides rightward across a
frictionless floor. Force is horizontal, with magnitude 2.0 N;F

:

1

F
:

2F
:

1

Additional examples, video, and practice available at WileyPLUS

Figure 7-15 Two forces and act on a box that slides
rightward across a frictionless floor. The velocity of the box is .v:

F
:

2F
:

1

60°
Frictionless F1

F2

v

Negative power.
(This force is
removing energy.)

Positive power.
(This force is
supplying energy.)

Kinetic Energy The kinetic energy K associated with the mo-
tion of a particle of mass m and speed v, where v is well below the
speed of light, is

(kinetic energy). (7-1)

Work Work W is energy transferred to or from an object via a
force acting on the object. Energy transferred to the object is posi-
tive work, and from the object, negative work.

Work Done by a Constant Force The work done on a par-
ticle by a constant force during displacement is

(work, constant force), (7-7, 7-8)

in which f is the constant angle between the directions of and .
Only the component of that is along the displacement can do
work on the object. When two or more forces act on an object,
their net work is the sum of the individual works done by the
forces, which is also equal to the work that would be done on the
object by the net force of those forces.

Work and Kinetic Energy For a particle, a change �K in the
kinetic energy equals the net work W done on the particle:

�K � Kf � Ki � W (work–kinetic energy theorem), (7-10)

F
:

net

d
:

F
:

d
:

F
:

W � Fd cos � � F
:

� d
:

d
:

F
:

K � 1
2 mv2

Review & Summary

in which Ki is the initial kinetic energy of the particle and Kf is the ki-
netic energy after the work is done. Equation 7-10 rearranged gives us

Kf � Ki � W. (7-11)

Work Done by the Gravitational Force The work Wg

done by the gravitational force on a particle-like object of mass
m as the object moves through a displacement is given by

Wg � mgd cos f, (7-12)

in which f is the angle between and .

Work Done in Lifting and Lowering an Object The work
Wa done by an applied force as a particle-like object is either lifted
or lowered is related to the work Wg done by the gravitational
force and the change �K in the object’s kinetic energy by

�K � Kf � Ki � Wa � Wg. (7-15)

If Kf � Ki , then Eq. 7-15 reduces to

Wa � �Wg, (7-16)

which tells us that the applied force transfers as much energy to the
object as the gravitational force transfers from it.

d
:

F
:

g

d
:

F
:

g

force is angled upward by 60	 to the floor and has magni-
tude 4.0 N.The speed v of the box at a certain instant is 3.0 m/s.
What is the power due to each force acting on the box at that
instant, and what is the net power? Is the net power changing
at that instant?

KEY IDEA

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather
than the work done on it).

F
:

2
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Fx

F1

–F1

x1 x

(a)

Fx

F1

–F1

x1 x

(b)

Fx

F1

–F1

x1 x

(c)

Fx

F1

–F1

x1
x

(d)
Figure 7-18
Question 5.

Spring Force The force from a spring is

(Hooke’s law), (7-20)

where is the displacement of the spring’s free end from its posi-
tion when the spring is in its relaxed state (neither compressed nor
extended), and k is the spring constant (a measure of the spring’s
stiffness). If an x axis lies along the spring, with the origin at the lo-
cation of the spring’s free end when the spring is in its relaxed
state, Eq. 7-20 can be written as

Fx � �kx (Hooke’s law). (7-21)

A spring force is thus a variable force: It varies with the
displacement of the spring’s free end.

Work Done by a Spring Force If an object is attached to
the spring’s free end, the work Ws done on the object by the spring
force when the object is moved from an initial position xi to a final
position xf is

(7-25)

If xi � 0 and xf � x, then Eq. 7-25 becomes

(7-26)

Work Done by a Variable Force When the force on a particle-
like object depends on the position of the object, the work done by 
on the object while the object moves from an initial position ri with co-
ordinates (xi, yi, zi) to a final position rf with coordinates (xf, yf, zf)

F
:

F
:

Ws � �1
2 kx2.

Ws � 1
2 kxi

2 � 1
2 kxf

2.

d
:

F
:

s � �kd
:

F
:

s must be found by integrating the force. If we assume that component
Fx may depend on x but not on y or z, component Fy may depend on y
but not on x or z, and component Fz may depend on z but not on x or
y, then the work is

(7-36)

If has only an x component, then Eq. 7-36 reduces to

(7-32)

Power The power due to a force is the rate at which that force
does work on an object. If the force does work W during a time inter-
val �t, the average power due to the force over that time interval is

(7-42)

Instantaneous power is the instantaneous rate of doing work:

(7-43)

For a force at an angle f to the direction of travel of the instan-
taneous velocity , the instantaneous power is

. (7-47, 7-48)P � Fv cos � � F
:

� v:

v:
F
:

P �
dW
dt

.

Pavg �
W
�t

.

W � �xf

xi

F(x) dx.

F
:

W � �xf

xi

Fx dx � �yf

yi

Fy dy � �zf

zi

Fz dz.

Questions

1 Rank the following velocities according to the kinetic energy a
particle will have with each velocity, greatest first: (a) ,
(b) , (c) , (d) , (e) ,v: � 5î3î � 4ĵv: �v: � �3î � 4ĵv: � �4î � 3ĵ

v: � 4î � 3ĵ

F2F1

(a) (b)

3

2

1

K

t

Figure 7-16 Question 2.

3 Is positive or negative work done by a constant force on a par-
ticle during a straight-line displacement if (a) the angle between 
and is 30	; (b) the angle is 100	; (c) and ?

4 In three situations, a briefly applied horizontal force changes the
velocity of a hockey puck that slides over frictionless ice. The over-
head views of Fig. 7-17 indicate, for each situation, the puck’s initial
speed vi, its final speed vf, and the directions of the corresponding ve-
locity vectors. Rank the situations according to the work done on the
puck by the applied force, most positive first and most negative last.

d
:

� �4îF
:

� 2î � 3ĵd
:

F
:

d
:

F
:

Figure 7-17 Question 4.

and (f) v 5 m/s at 30	 to the horizontal.

2 Figure 7-16a shows two horizontal forces that act on a block
that is sliding to the right across a frictionless floor. Figure 7-16b
shows three plots of the block’s kinetic energy K versus time t.
Which of the plots best corresponds to the following three situ-
ations: (a) F1 � F2, (b) F1 
 F2, (c) F1 � F2?

�

5 The graphs in Fig. 7-18 give the x component Fx of a force act-
ing on a particle moving along an x axis. Rank them according to
the work done by the force on the particle from x � 0 to x � x1,
from most positive work first to most negative work last.

(a) (b) (c)

y
vf = 5 m/s

vi = 6 m/s
x

y

vf = 3 m/s

vi = 4 m/s
x

y vf = 4 m/s

vi = 2 m/s

x
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6 Figure 7-19 gives the x com-
ponent Fx of a force that can act
on a particle. If the particle be-
gins at rest at x � 0, what is its
coordinate when it has (a) its
greatest kinetic energy, (b) its
greatest speed, and (c) zero
speed? (d) What is the particle’s
direction of travel after it
reaches x � 6 m?

7 In Fig. 7-20, a greased pig has a choice of three frictionless slides
along which to slide to the ground. Rank the slides according to how
much work the gravitational force does on the pig during the descent,
greatest first.

8 Figure 7-21a shows four situations in which a horizontal force acts
on the same block, which is initially at rest. The force magnitudes are
F2 � F4 � 2F1 � 2F3. The horizontal component vx of the block’s ve-
locity is shown in Fig. 7-21b for the four situations. (a) Which plot in
Fig. 7-21b best corresponds to which force in Fig. 7-21a? (b) Which

1 2 3 4 5 6 7 8 
x (m) 

F2

F1

Fx

–F1

–F2

Figure 7-19 Question 6.

(a) (b) (c)
Figure 7-20
Question 7.

F1 F2 F4F3

x

(a)

(b)

vx

t

D
C

B
A

(c)

K

t

H
G

F
E

Figure 7-21 Question 8.

K

K

K

K

K

K

K

K

t

t

t

t

t

t

t

t

(a) (b) (c) (d)

(e) ( f ) (g) (h)

Figure 7-22 Question 10.

11 In three situations, a single force acts on a moving particle.
Here are the velocities (at that instant) and the forces:
(1) (2) 

(3) . Rank
the situations according to the rate at which energy is being trans-
ferred, greatest transfer to the particle ranked first, greatest trans-
fer from the particle ranked last.

12 Figure 7-23 shows three arrangements of a block attached to
identical springs that are in their relaxed state when the block is
centered as shown. Rank the arrangements according to the mag-
nitude of the net force on the block, largest first, when the block is
displaced by distance d (a) to the right and (b) to the left. Rank the
arrangements according to the work done on the block by the
spring forces, greatest first, when the block is displaced by d (c) to
the right and (d) to the left.

F
:

� (2î � 6ĵ) Nv: � (�3î � ĵ) m/s,F
:

� (�2ĵ � 7k̂) N;
v: � (2î � 3ĵ) m/s,F

:
� (6î � 20ĵ) N;v: � (�4î) m/s,

(1) (2) (3)
Figure 7-23 Question 12.

plot in Fig. 7-21c (for kinetic energy K versus time t) best corre-
sponds to which plot in Fig. 7-21b?

9 Spring A is stiffer than spring B (kA 
 kB). The spring force of
which spring does more work if the springs are compressed (a) the
same distance and (b) by the same applied force?

10 A glob of slime is launched or dropped from the edge of a
cliff. Which of the graphs in Fig. 7-22 could possibly show how the
kinetic energy of the glob changes during its flight?

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 7-1 Kinetic Energy

•1 A proton (mass m � 1.67 � 10�27 kg) is being acceler-
ated along a straight line at 3.6 1015 m/s2 in a machine. If the pro-
ton has an initial speed of 2.4 � 107 m/s and travels 3.5 cm, what
then is (a) its speed and (b) the increase in its kinetic energy?

�

SSM

•2 If a Saturn V rocket with an Apollo spacecraft attached had a
combined mass of 2.9 � 105 kg and reached a speed of 11.2 km/s,
how much kinetic energy would it then have?

•3 On August 10, 1972, a large meteorite skipped across the
atmosphere above the western United States and western Canada,

http://www.wiley.com/college/halliday
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much like a stone skipped across water. The accompanying fireball
was so bright that it could be seen in the daytime sky and was
brighter than the usual meteorite trail. The meteorite’s mass was
about 4 � 106 kg; its speed was about 15 km/s. Had it entered the
atmosphere vertically, it would have hit Earth’s surface with about
the same speed. (a) Calculate the meteorite’s loss of kinetic energy
(in joules) that would have been associated with the vertical impact.
(b) Express the energy as a multiple of the explosive energy of
1 megaton of TNT, which is 4.2 � 1015 J. (c) The energy associated
with the atomic bomb explosion over Hiroshima was equivalent to
13 kilotons of TNT. To how many Hiroshima bombs would the me-
teorite impact have been equivalent? 

•4 An explosion at ground level leaves a crater with a diam-
eter that is proportional to the energy of the explosion raised to
the power; an explosion of 1 megaton of TNT leaves a crater
with a 1 km diameter. Below Lake Huron in Michigan there ap-
pears to be an ancient impact crater with a 50 km diameter. What
was the kinetic energy associated with that impact, in terms of
(a) megatons of TNT (1 megaton yields 4.2 � 1015 J) and
(b) Hiroshima bomb equivalents (13 kilotons of TNT each)?
(Ancient meteorite or comet impacts may have significantly
altered the climate, killing off the dinosaurs and other life-forms.)

••5 A father racing his son has half the kinetic energy of the son,
who has half the mass of the father.The father speeds up by 1.0 m/s
and then has the same kinetic energy as the son.What are the origi-
nal speeds of (a) the father and (b) the son?

••6 A bead with mass 1.8 � 10�2 kg is moving along a wire in
the positive direction of an x axis. Beginning at time t � 0, when
the bead passes through x � 0 with speed 12 m/s, a constant force
acts on the bead. Figure 7-24 indicates the bead’s position at
these four times: t0 � 0, t1 � 1.0 s, t2 � 2.0 s, and t3 � 3.0 s. The
bead momentarily stops at t � 3.0 s. What is the kinetic energy of
the bead at t � 10 s?

1
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Figure 7-24 Problem 6.
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Figure 7-25 Problem 7.

ity of 4.0 m/s in the positive x direction and some time later has a
velocity of 6.0 m/s in the positive y direction. How much work is
done on the canister by the 5.0 N force during this time?

•10 A coin slides over a frictionless plane and across an xy
coordinate system from the origin to a point with xy coordinates
(3.0 m, 4.0 m) while a constant force acts on it. The force has mag-
nitude 2.0 N and is directed at a counterclockwise angle of 100	
from the positive direction of the x axis. How much work is done
by the force on the coin during the displacement?

••11 A 12.0 N force with a fixed orientation does work on a
particle as the particle moves through the three-dimensional dis-
placement m. What is the angle be-
tween the force and the displacement if the change in the particle’s
kinetic energy is (a) �30.0 J and (b) �30.0 J?

••12 A can of bolts and nuts is
pushed 2.00 m along an x axis by a
broom along the greasy (friction-
less) floor of a car repair shop in a
version of shuffleboard. Figure 7-26
gives the work W done on the can
by the constant horizontal force
from the broom, versus the can’s po-
sition x.The scale of the figure’s ver-
tical axis is set by Ws � 6.0 J. (a)
What is the magnitude of that
force? (b) If the can had an initial kinetic energy of 3.00 J, moving
in the positive direction of the x axis, what is its kinetic energy at
the end of the 2.00 m?

••13 A luge and its rider, with a total mass of 85 kg, emerge from a
downhill track onto a horizontal straight track with an initial speed
of 37 m/s. If a force slows them to a stop at a constant rate of 2.0
m/s2, (a) what magnitude F is required for the force, (b) what dis-
tance d do they travel while slowing, and (c) what work W is done
on them by the force? What are (d) F, (e) d, and (f) W if they, in-
stead, slow at 4.0 m/s2?

••14 Figure 7-27 shows an over-
head view of three horizontal forces
acting on a cargo canister that was
initially stationary but now moves
across a frictionless floor. The force
magnitudes are F1 � 3.00 N, F2 �
4.00 N, and F3 � 10.0 N, and the indi-
cated angles are u2 � 50.0	 and u3 �
35.0	. What is the net work done on
the canister by the three forces dur-
ing the first 4.00 m of displacement?

••15 Figure 7-28 shows three
forces applied to a trunk that moves
leftward by 3.00 m over a friction-
less floor. The force magnitudes are
F1 � 5.00 N, F2 � 9.00 N, and F3 �
3.00 N, and the indicated angle is u �
60.0	. During the displacement,
(a) what is the net work done on the
trunk by the three forces and (b)
does the kinetic energy of the trunk
increase or decrease?

••16 An 8.0 kg object is moving in the positive direction
of an x axis.When it passes through x 0, a constant force directed�
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Figure 7-26 Problem 12.

Module 7-2 Work and Kinetic Energy
•7 A 3.0 kg body is at rest on a frictionless horizontal air track
when a constant horizontal force acting in the positive direction of
an x axis along the track is applied to the body.A stroboscopic graph
of the position of the body as it slides to the right is shown in Fig. 7-
25.The force is applied to the body at t � 0, and the graph records
the position of the body at 0.50 s intervals. How much work is done
on the body by the applied force between t � 0 and t � 2.0 s?F

:

F
:

F
:

•8 A ice block floating in a river is pushed through a displacement
along a straight embankment by rushing wa-

ter, which exerts a force on the block. How
much work does the force do on the block during the displacement?

•9 The only force acting on a 2.0 kg canister that is moving in an
xy plane has a magnitude of 5.0 N.The canister initially has a veloc-
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� (15 m)î � (12 m)ĵ
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of magnitude 20.0 N is applied to a
3.00 kg psychology book as the book
slides a distance d � 0.500 m up a fric-
tionless ramp at angle u � 30.0	. (a)
During the displacement, what is the net
work done on the book by , the gravi-
tational force on the book, and the nor-
mal force on the book? (b) If the book
has zero kinetic energy at the start of the
displacement, what is its speed at the end of the displacement?

•••25 In Fig. 7-34, a 0.250 kg block of cheese lies on
the floor of a 900 kg elevator cab that is being pulled
upward by a cable through distance d1 � 2.40 m and
then through distance d2 � 10.5 m. (a) Through d1, if
the normal force on the block from the floor has con-
stant magnitude FN � 3.00 N, how much work is done
on the cab by the force from the cable? (b) Through d2,
if the work done on the cab by the (constant) force
from the cable is 92.61 kJ, what is the magnitude of FN?

Module 7-4 Work Done by a Spring Force
•26 In Fig. 7-10, we must apply a force of magnitude 80 N to hold the
block stationary at x � �2.0 cm. From that position, we then slowly
move the block so that our force does �4.0 J of work on the
spring–block system; the block is then again stationary. What is the
block’s position? (Hint:There are two answers.)

•27 A spring and block are in the arrangement of Fig. 7-10.When the
block is pulled out to x � �4.0 cm, we must apply a force of magnitude
360 N to hold it there.We pull the block to x � 11 cm and then release
it. How much work does the spring do on the block as the block
moves from xi � �5.0 cm to (a) x � �3.0 cm, (b) x � �3.0 cm,
(c) x � �5.0 cm,and (d) x � �9.0 cm?

•28 During spring semester at MIT, residents of the parallel build-
ings of the East Campus dorms battle one another with large cata-
pults that are made with surgical hose mounted on a window frame.
A balloon filled with dyed water is placed in a pouch attached to the
hose, which is then stretched through the width of the room.Assume
that the stretching of the hose obeys Hooke’s law with a spring con-
stant of 100 N/m. If the hose is stretched by 5.00 m and then released,
how much work does the force from the hose do on the balloon in
the pouch by the time the hose reaches its relaxed length?

••29 In the arrangement of Fig. 7-10, we gradually pull the block
from x � 0 to x � �3.0 cm, where it is stationary. Figure 7-35 gives

F
:

a

F
:

a

through vertical distance h � 0.150 m?

••24 In Fig. 7-33, a horizontal force

along the axis begins to act on it.
Figure 7-29 gives its kinetic energy
K versus position x as it moves
from x � 0 to x � 5.0 m; K0 � 30.0
J. The force continues to act. What
is v when the object moves back
through x � �3.0 m?

Module 7-3 Work Done by
the Gravitational Force
•17 A helicopter lifts a 72 kg astronaut 15 m verti-
cally from the ocean by means of a cable. The acceleration of the
astronaut is g/10. How much work is done on the astronaut by
(a) the force from the helicopter and (b) the gravitational force on
her? Just before she reaches the helicopter, what are her (c) kinetic
energy and (d) speed?

•18 (a) In 1975 the roof of Montreal’s Velodrome, with
a weight of 360 kN, was lifted by 10 cm so that it could be centered.
How much work was done on the roof by the forces making the
lift? (b) In 1960 a Tampa, Florida, mother reportedly raised one
end of a car that had fallen onto her son when a jack failed. If her
panic lift effectively raised 4000 N (about of the car’s weight) by
5.0 cm, how much work did her force do on the car?

••19 In Fig. 7-30, a block of ice
slides down a frictionless ramp at angle

50	 while an ice worker pulls on
the block (via a rope) with a force 
that has a magnitude of 50 N and is di-
rected up the ramp. As the block slides
through distance d 0.50 m along the
ramp, its kinetic energy increases by 80
J. How much greater would its kinetic
energy have been if the rope had not
been attached to the block?

••20 A block is sent up a frictionless
ramp along which an x axis extends up-
ward. Figure 7-31 gives the kinetic en-
ergy of the block as a function of posi-
tion x; the scale of the figure’s vertical
axis is set by Ks � 40.0 J. If the block’s
initial speed is 4.00 m/s, what is the nor-
mal force on the block?

••21 A cord is used to vertically
lower an initially stationary block of
mass M at a constant downward acceleration of g/4.When the block
has fallen a distance d, find (a) the work done by the cord’s force on
the block, (b) the work done by the gravitational force on the block,
(c) the kinetic energy of the block, and (d) the speed of the block.

••22 A cave rescue team lifts an injured spelunker directly upward
and out of a sinkhole by means of a motor-driven cable. The lift is
performed in three stages, each requiring a vertical distance of 10.0
m: (a) the initially stationary spelunker is accelerated to a speed of
5.00 m/s; (b) he is then lifted at the con-
stant speed of 5.00 m/s; (c) finally he is
decelerated to zero speed. How much
work is done on the 80.0 kg rescuee by
the force lifting him during each stage?

••23 In Fig. 7-32, a constant force of
magnitude 82.0 N is applied to a 3.00
kg shoe box at angle 53.0	, causing� �
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the work that our force does on the block. The scale of the figure’s
vertical axis is set by Ws � 1.0 J. We then pull the block out to x �
�5.0 cm and release it from rest. How much work does the spring
do on the block when the block moves from xi � �5.0 cm to
(a) x � �4.0 cm, (b) x � �2.0 cm, and (c) x � �5.0 cm?

••30 In Fig. 7-10a, a block of mass
m lies on a horizontal frictionless
surface and is attached to one end
of a horizontal spring (spring con-
stant k) whose other end is fixed.
The block is initially at rest at the
position where the spring is
unstretched (x � 0) when a con-
stant horizontal force in the positive direction of the x axis is ap-
plied to it.A plot of the resulting kinetic energy of the block versus
its position x is shown in Fig. 7-36. The scale of the figure’s vertical
axis is set by Ks � 4.0 J. (a) What is the magnitude of ? (b) What
is the value of k?

••31 The only force acting on a 2.0 kg body as it
moves along a positive x axis has an x component Fx 6x N,
with x in meters.The velocity at x � 3.0 m is 8.0 m/s. (a) What is the
velocity of the body at x � 4.0 m? (b) At what positive value of x
will the body have a velocity of 5.0 m/s?

••32 Figure 7-37 gives spring force
Fx versus position x for the
spring–block arrangement of Fig. 7-
10. The scale is set by Fs 160.0 N.
We release the block at x 12 cm.
How much work does the spring do
on the block when the block moves
from xi �8.0 cm to (a) x �5.0
cm, (b) x 5.0 cm, (c) x 8.0
cm, and (d) x 10.0 cm?

•••33 The block in Fig. 7-10a lies on a horizontal frictionless
surface, and the spring constant is 50 N/m. Initially, the spring is at
its relaxed length and the block is stationary at position x � 0.
Then an applied force with a constant magnitude of 3.0 N pulls the
block in the positive direction of the x axis, stretching the spring
until the block stops.When that stopping point is reached, what are
(a) the position of the block, (b) the work that has been done on
the block by the applied force, and (c) the work that has been done
on the block by the spring force? During the block’s displacement,
what are (d) the block’s position when its kinetic energy is maxi-
mum and (e) the value of that maximum kinetic energy?

Module 7-5 Work Done by a General Variable Force
•34 A 10 kg brick moves along an x axis. Its acceleration as a
function of its position is shown in Fig. 7-38.The scale of the figure’s
vertical axis is set by as � 20.0 m/s2. What is the net work per-
formed on the brick by the force causing the acceleration as the
brick moves from x � 0 to x � 8.0 m?
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•35 The force on a particle is directed along an x axis
and given by F F0(x/x0 1). Find the work done by the force in
moving the particle from x � 0 to x � 2x0 by (a) plotting F(x) and
measuring the work from the graph and (b) integrating F(x).

•36 A 5.0 kg block moves in a
straight line on a horizontal friction-
less surface under the influence of a
force that varies with position as
shown in Fig. 7-39.The scale of the fig-
ure’s vertical axis is set by Fs 10.0 N.
How much work is done by the force
as the block moves from the origin
to x � 8.0 m?

••37 Figure 7-40 gives the accel-
eration of a 2.00 kg particle as an applied force moves it from restF
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••38 A 1.5 kg block is initially at rest on a horizontal frictionless
surface when a horizontal force along an x axis is applied to the block.
The force is given by , where x is in meters and
the initial position of the block is x 0. (a) What is the kinetic energy
of the block as it passes through x � 2.0 m? (b) What is the maximum
kinetic energy of the block between x � 0 and x � 2.0 m?

••39 A force acts on a particle as the parti-
cle moves along an x axis, with in newtons, x in meters, and c a
constant.At x � 0, the particle’s kinetic energy is 20.0 J; at x � 3.00 m,
it is 11.0 J. Find c.

••40 A can of sardines is made to move along an x axis from
x � 0.25 m to x � 1.25 m by a force with a magnitude given by
F � exp(�4x2), with x in meters and F in newtons. (Here exp is the ex-
ponential function.) How much work is done on the can by the force?

••41 A single force acts on a 3.0 kg particle-like object whose posi-
tion is given by x � 3.0t � 4.0t2 � 1.0t3, with x in meters and t in
seconds. Find the work done by the force from t � 0 to t � 4.0 s.

•••42 Figure 7-41 shows a cord attached to a cart that can slide
along a frictionless horizontal rail aligned along an x axis. The left

F
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�
(2.5 � x2)î NF

:
(x) �

along an x axis from x � 0 to x 9.0 m.The scale of the figure’s verti-
cal axis is set by as 6.0 m/s2. How much work has the force done on
the particle when the particle reaches (a) x � 4.0 m, (b) x � 7.0 m,
and (c) x � 9.0 m? What is the particle’s speed and direction of travel
when it reaches (d) x � 4.0 m, (e) x � 7.0 m, and (f) x � 9.0 m?
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end of the cord is pulled over a pulley, of negligible mass and friction
and at cord height h � 1.20 m, so the cart slides from x1 � 3.00 m to
x2 � 1.00 m. During the move, the tension in the cord is a constant
25.0 N. What is the change in the kinetic energy of the cart during
the move?

Module 7-6 Power
•43 A force of 5.0 N acts on a 15 kg body initially at rest.
Compute the work done by the force in (a) the first, (b) the second,
and (c) the third seconds and (d) the instantaneous power due to
the force at the end of the third second.

•44 A skier is pulled by a towrope up a frictionless ski slope
that makes an angle of 12	 with the horizontal. The rope moves
parallel to the slope with a constant speed of 1.0 m/s. The force
of the rope does 900 J of work on the skier as the skier moves a
distance of 8.0 m up the incline. (a) If the rope moved with a
constant speed of 2.0 m/s, how much work would the force of the
rope do on the skier as the skier moved a distance of 8.0 m up
the incline? At what rate is the force of the rope doing work on
the skier when the rope moves with a speed of (b) 1.0 m/s and
(c) 2.0 m/s?

•45 A 100 kg block is pulled at a constant speed of
5.0 m/s across a horizontal floor by an applied force of 122 N di-
rected 37	 above the horizontal. What is the rate at which the force
does work on the block?

•46 The loaded cab of an elevator has a mass of 3.0 � 103 kg and
moves 210 m up the shaft in 23 s at constant speed. At what aver-
age rate does the force from the cable do work on the cab?

••47 A machine carries a 4.0 kg package from an initial position
of at t � 0 to a final posi-
tion of at t 12 s. The
constant force applied by the machine on the package is

. For that displacement,
find (a) the work done on the package by the machine’s force and
(b) the average power of the machine’s force on the package.

••48 A 0.30 kg ladle sliding on a horizontal frictionless surface is
attached to one end of a horizontal spring (k � 500 N/m) whose
other end is fixed. The ladle has a kinetic energy of 10 J as it
passes through its equilibrium position (the point at which the
spring force is zero). (a) At what rate is the spring doing work on
the ladle as the ladle passes through its equilibrium position?
(b) At what rate is the spring doing work on the ladle when the
spring is compressed 0.10 m and the ladle is moving away from the
equilibrium position?

••49 A fully loaded, slow-moving freight elevator has a cab
with a total mass of 1200 kg, which is required to travel upward
54 m in 3.0 min, starting and ending at rest. The elevator’s counter-
weight has a mass of only 950 kg, and so the elevator motor must
help. What average power is required of the force the motor exerts
on the cab via the cable?

••50 (a) At a certain instant, a particle-like object is acted on by a
force while the object’s veloc-
ity is . What is the instantaneous rate
at which the force does work on the object? (b) At some other
time, the velocity consists of only a y component. If the force is un-
changed and the instantaneous power is �12 W, what is the veloc-
ity of the object?

••51 A force acts on a
2.00 kg mobile object that moves from an initial position of
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d
:
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to a final position of
in 4.00 s. Find (a) the

work done on the object by the force in the 4.00 s interval, (b) the
average power due to the force during that interval, and (c) the an-
gle between vectors and .

•••52 A funny car accelerates from rest through a measured track
distance in time T with the engine operating at a constant power P.
If the track crew can increase the engine power by a differential
amount dP, what is the change in the time required for the run?

Additional Problems
53 Figure 7-42 shows a cold package of hot dogs sliding right-
ward across a frictionless floor through a distance d � 20.0 cm
while three forces act on the package. Two of them are horizontal
and have the magnitudes F1 � 5.00 N and F2 � 1.00 N; the third is
angled down by u � 60.0	 and has the magnitude F3 � 4.00 N.
(a) For the 20.0 cm displacement, what is the net work done on the
package by the three applied forces, the gravitational force on the
package, and the normal force on the package? (b) If the package
has a mass of 2.0 kg and an initial kinetic energy of 0, what is its
speed at the end of the displacement?
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Figure 7-42 Problem 53.
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54 The only force acting on a
2.0 kg body as the body moves along
an x axis varies as shown in Fig. 7-43.
The scale of the figure’s vertical axis
is set by Fs � 4.0 N. The velocity of
the body at x � 0 is 4.0 m/s. (a) What
is the kinetic energy of the body at
x � 3.0 m? (b) At what value of x will
the body have a kinetic energy of
8.0 J? (c) What is the maximum kinetic energy of the body between 
x � 0 and x � 5.0 m?

55 A horse pulls a cart with a force of 40 lb at an angle of 30	
above the horizontal and moves along at a speed of 6.0 mi/h. (a) How
much work does the force do in 10 min? (b) What is the average
power (in horsepower) of the force?

56 An initially stationary 2.0 kg object accelerates horizontally and
uniformly to a speed of 10 m/s in 3.0 s. (a) In that 3.0 s interval, how
much work is done on the object by the
force accelerating it? What is the instan-
taneous power due to that force (b) at
the end of the interval and (c) at the end
of the first half of the interval?

57 A 230 kg crate hangs from the end
of a rope of length L � 12.0 m.You push
horizontally on the crate with a
varying force to move it distance d �
4.00 m to the side (Fig. 7-44). (a) What is
the magnitude of when the crate is
in this final position? During the crate’s
displacement, what are (b) the total
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bead for a range of f values; W0 � 25 J.
How much work is done by if f is (a)
64	 and (b) 147	?

60 A frightened child is restrained by her mother as the child slides
down a frictionless playground slide. If the force on the child from the
mother is 100 N up the slide, the child’s kinetic energy increases by 30 J
as she moves down the slide a distance of 1.8 m. (a) How much work is
done on the child by the gravitational force during the 1.8 m descent?
(b) If the child is not restrained by her mother, how much will the
child’s kinetic energy increase as she comes down the slide that same
distance of 1.8 m?

61 How much work is done by a force ,
with x in meters, that moves a particle from a position 

to a position ?

62 A 250 g block is dropped onto a relaxed ver-
tical spring that has a spring constant of k �
2.5 N/cm (Fig. 7-46).The block becomes attached to
the spring and compresses the spring 12 cm before
momentarily stopping. While the spring is being
compressed, what work is done on the block by
(a) the gravitational force on it and (b) the spring
force? (c) What is the speed of the block just before
it hits the spring? (Assume that friction is negligi-
ble.) (d) If the speed at impact is doubled, what is
the maximum compression of the spring?

63 To push a 25.0 kg crate up a frictionlessSSM

r:f � �(4 m)î � (3 m)ĵ (2 m)î � (3 m)ĵ
r:i �

F
:

� (2x N)î � (3 N)ĵ

F
:

a
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work done on it, (c) the work done by the gravitational force on the
crate, and (d) the work done by the pull on the crate from the rope?
(e) Knowing that the crate is motionless before and after its displace-
ment, use the answers to (b), (c), and (d) to find the work your force

does on the crate. (f) Why is the work of your force not equal to
the product of the horizontal displacement and the answer to (a)?

58 To pull a 50 kg crate across a horizontal frictionless floor, a
worker applies a force of 210 N, directed 20	 above the horizontal.
As the crate moves 3.0 m, what work is done on the crate by (a) the
worker’s force, (b) the gravitational force, and (c) the normal force?
(d) What is the total work?

59 A force is applied to a bead as
the bead is moved along a straight wire
through displacement 5.0 cm. The mag-
nitude of is set at a certain value, but
the angle f between and the bead’s
displacement can be chosen. Figure 7-45
gives the work W done by on theF

:

a

F
:

a

F
:

a

�

F
:

a

F
:

65 In Fig. 7-47, a cord runs around
two massless, frictionless pulleys. A
canister with mass m � 20 kg hangs
from one pulley, and you exert a
force on the free end of the cord.
(a) What must be the magnitude of 
if you are to lift the canister at a con-
stant speed? (b) To lift the canister
by 2.0 cm, how far must you pull the
free end of the cord? During that lift,
what is the work done on the canister
by (c) your force (via the cord) and
(d) the gravitational force? (Hint:
When a cord loops around a pulley
as shown, it pulls on the pulley with a
net force that is twice the tension in the cord.)

66 If a car of mass 1200 kg is moving along a highway at
120 km/h, what is the car’s kinetic energy as determined by some-
one standing alongside the highway?

67 A spring with a pointer attached is hanging next to a
scale marked in millimeters. Three different packages are hung
from the spring, in turn, as shown in Fig. 7-48. (a) Which mark on
the scale will the pointer indicate when no package is hung from
the spring? (b) What is the weight W of the third package?

SSM

F
:

F
:

W
 (

J)

W0

0
φ 

Figure 7-45
Problem 59.

Figure 7-46
Problem 62.

mF

Figure 7-47 Problem 65.

mm
0

30

W

mm
0

40

110 N 

mm
0

60

240 N 

Figure 7-48 Problem 67.

68 An iceboat is at rest on a frictionless frozen lake when a sud-
den wind exerts a constant force of 200 N, toward the east, on the
boat. Due to the angle of the sail, the wind causes the boat to
slide in a straight line for a distance of 8.0 m in a direction 20	
north of east. What is the kinetic energy of the iceboat at the end
of that 8.0 m?

69 If a ski lift raises 100 passengers averaging 660 N in weight to
a height of 150 m in 60.0 s, at constant speed, what average power
is required of the force making the lift?

70 A force acts on a particle as the particle
goes through displacement . (Other forces
also act on the particle.) What is c if the work done on the particle
by force is (a) 0, (b) 17 J, and (c) �18 J?

71 A constant force of magnitude 10 N makes an angle of 150	
(measured counterclockwise) with the positive x direction as it acts
on a 2.0 kg object moving in an xy plane. How much work is done
on the object by the force as the object moves from the origin to
the point having position vector (2.0 m) � (4.0 m) ?ĵî

F
:

d
:

� (3.0 m)î � (2.0 m)ĵ
F
:

� (4.0 N)î � cĵ

incline, angled at 25.0	 to the horizontal, a worker exerts a force of
209 N parallel to the incline. As the crate slides 1.50 m, how much
work is done on the crate by (a) the worker’s applied force, (b) the
gravitational force on the crate, and (c) the normal force exerted
by the incline on the crate? (d) What is the total work done on the
crate?

64 Boxes are transported from one location to another in a ware-
house by means of a conveyor belt that moves with a constant
speed of 0.50 m/s. At a certain location the conveyor belt moves for
2.0 m up an incline that makes an angle of 10	 with the horizontal,
then for 2.0 m horizontally, and finally for 2.0 m down an incline
that makes an angle of 10	 with the horizontal.Assume that a 2.0 kg
box rides on the belt without slipping. At what rate is the force of
the conveyor belt doing work on the box as the box moves (a) up
the 10	 incline, (b) horizontally, and (c) down the 10	 incline?
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72 In Fig. 7-49a, a 2.0 N force is applied to a 4.0 kg block at a
downward angle u as the block moves rightward through 1.0 m
across a frictionless floor. Find an expression for the speed vf of the
block at the end of that distance if the block’s initial velocity is
(a) 0 and (b) 1.0 m/s to the right. (c) The situation in Fig. 7-49b is
similar in that the block is initially moving at 1.0 m/s to the right,
but now the 2.0 N force is directed downward to the left. Find an
expression for the speed vf of the block at the end of the 1.0 m dis-
tance. (d) Graph all three expressions for vf versus downward
angle u for u � 0	 to u � 90	. Interpret the graphs.

rected along the x axis and has the x component Fax 9x 3x2,
with x in meters and Fax in newtons. The case starts at rest at the
position x � 0, and it moves until it is again at rest. (a) Plot the
work does on the case as a function of x. (b) At what position is
the work maximum, and (c) what is that maximum value? (d) At
what position has the work decreased to zero? (e) At what position
is the case again at rest?

79 A 2.0 kg lunchbox is sent sliding over a frictionless
surface, in the positive direction of an x axis along the surface.
Beginning at time t � 0, a steady wind pushes on the lunchbox in the
negative direction of the x axis. Figure 7-51 shows the position x of
the lunchbox as a function of time t as the wind pushes on the lunch-
box. From the graph, estimate the kinetic energy of the lunchbox at
(a) t � 1.0 s and (b) t � 5.0 s. (c) How much work does the force
from the wind do on the lunchbox from t � 1.0 s to t � 5.0 s?

SSM

F
:

a

��
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F
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F

(a) (b)

Figure 7-49 Problem 72.

73 A force in the positive direction of an x axis acts on an object
moving along the axis. If the magnitude of the force is F � 10e�x/2.0

N, with x in meters, find the work done by as the object moves
from x � 0 to x � 2.0 m by (a) plotting F(x) and estimating the area
under the curve and (b) integrating to find the work analytically.

74 A particle moves along a straight path through displacement
while force acts on it. (Other

forces also act on the particle.) What is the value of c if the work
done by on the particle is (a) zero, (b) positive, and (c) negative?

75 What is the power of the force required to move a 4500
kg elevator cab with a load of 1800 kg upward at constant speed
3.80 m/s?

76 A 45 kg block of ice slides down a frictionless incline 1.5 m
long and 0.91 m high. A worker pushes up against the ice, parallel
to the incline, so that the block slides down at constant speed.
(a) Find the magnitude of the worker’s force. How much work is
done on the block by (b) the worker’s force, (c) the gravitational
force on the block, (d) the normal force on the block from the sur-
face of the incline, and (e) the net force on the block?

77 As a particle moves along an x axis, a force in the positive direc-
tion of the axis acts on it. Figure 7-50 shows the magnitude F of the
force versus position x of the particle.The curve is given by F � a/x2,
with a � 9.0 N �m2. Find the work done on the particle by the force
as the particle moves from x � 1.0 m to x � 3.0 m by (a) estimating
the work from the graph and (b) integrating the force function.

SSM
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Figure 7-51 Problem 79.

80 Numerical integration. A breadbox is made to move along an
x axis from x � 0.15 m to x � 1.20 m by a force with a magnitude
given by F � exp(�2x2), with x in meters and F in newtons. (Here
exp is the exponential function.) How much work is done on the
breadbox by the force?

81 In the block–spring arrangement of Fig. 7-10, the block’s mass
is 4.00 kg and the spring constant is 500 N/m. The block is released
from position xi � 0.300 m.What are (a) the block’s speed at x � 0,
(b) the work done by the spring when the block reaches x � 0, (c)
the instantaneous power due to the spring at the release point xi ,
(d) the instantaneous power at x � 0, and (e) the block’s position
when the power is maximum?

82 A 4.00 kg block is pulled up a frictionless inclined plane by a
50.0 N force that is parallel to the plane, starting from rest.The nor-
mal force on the block from the plane has magnitude 13.41 N.What
is the block’s speed when its displacement up the ramp is 3.00 m?

83 A spring with a spring constant of 18.0 N/cm has a cage at-
tached to its free end. (a) How much work does the spring force do
on the cage when the spring is stretched from its relaxed length by
7.60 mm? (b) How much additional work is done by the spring force
when the spring is stretched by an additional 7.60 mm?

84 A force N acts on a 2.90 kg
object that moves in time interval 2.10 s from an initial posi-
tion m to a final position r:2 �r:1 � (2.70î � 2.90ĵ � 5.50k̂)

F
:

� (2.00î � 9.00ĵ � 5.30k̂)

78 A CD case slides along a floor in the positive direction of an
x axis while an applied force acts on the case. The force is di-F

:

a

m. Find (a) the work done on the object
by the force in that time interval, (b) the average power due to the
force during that time interval, and (c) the angle between vectors

and .

85 At t � 0, force N begins to act
on a 2.00 kg particle with an initial speed of 4.00 m/s. What is the
particle’s speed when its displacement from the initial point is

m?d
:

� (2.00î � 2.00ĵ � 7.00k̂)

F
:

� (�5.00î � 5.00ĵ � 4.00k̂)

r:2r:1

(�4.10î � 3.30ĵ � 5.40k̂)



What Is Physics?
One job of physics is to identify the different types of energy in the world,
especially those that are of common importance. One general type of energy is
potential energy U. Technically, potential energy is energy that can be associated
with the configuration (arrangement) of a system of objects that exert forces on
one another.

C H A P T E R  8

Potential Energy and 
Conservation of Energy

8-1 POTENTIAL ENERGY

After reading this module, you should be able to . . .
8.01 Distinguish a conservative force from a nonconservative

force.
8.02 For a particle moving between two points, identify that

the work done by a conservative force does not depend on
which path the particle takes.

8.03 Calculate the gravitational potential energy of a particle
(or, more properly, a particle–Earth system).

8.04 Calculate the elastic potential energy of a block–spring
system.

● A force is a conservative force if the net work it does on
a particle moving around any closed path, from an initial
point and then back to that point, is zero. Equivalently, a force
is conservative if the net work it does on a particle moving 
between two points does not depend on the path taken by
the particle. The gravitational force and the spring force are
conservative forces; the kinetic frictional force is a noncon-
servative force.

● Potential energy is energy that is associated with the con-
figuration of a system in which a conservative force acts.
When the conservative force does work W on a particle
within the system, the change �U in the potential energy of
the system is

�U � �W.

If the particle moves from point xi to point xf, the change in
the potential energy of the system is

�U � ��xf

xi

F(x) dx.

● The potential energy associated with a system consisting of
Earth and a nearby particle is gravitational potential energy. If
the particle moves from height yi to height yf , the change in the
gravitational potential energy of the particle–Earth system is

�U � mg(yf � yi) � mg �y.

● If the reference point of the particle is set as yi � 0 and the
corresponding gravitational potential energy of the system is
set as Ui � 0, then the gravitational potential energy U when
the particle is at any height y is

U(y) � mgy.

● Elastic potential energy is the energy associated with the
state of compression or extension of an elastic object. For a
spring that exerts a spring force F � �kx when its free end
has displacement x, the elastic potential energy is

● The reference configuration has the spring at its relaxed
length, at which x � 0 and U � 0.

U(x) � 1
2kx2.

Key Ideas

Learning Objectives
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This is a pretty formal definition of something that is actually familiar to you.
An example might help better than the definition: A bungee-cord jumper plunges
from a staging platform (Fig. 8-1). The system of objects consists of Earth and the
jumper. The force between the objects is the gravitational force. The configuration
of the system changes (the separation between the jumper and Earth decreases—
that is, of course, the thrill of the jump). We can account for the jumper’s motion
and increase in kinetic energy by defining a gravitational potential energy U. This
is the energy associated with the state of separation between two objects that at-
tract each other by the gravitational force, here the jumper and Earth.

When the jumper begins to stretch the bungee cord near the end of the
plunge, the system of objects consists of the cord and the jumper. The force
between the objects is an elastic (spring-like) force. The configuration of the sys-
tem changes (the cord stretches). We can account for the jumper’s decrease in
kinetic energy and the cord’s increase in length by defining an elastic potential
energy U.This is the energy associated with the state of compression or extension
of an elastic object, here the bungee cord.

Physics determines how the potential energy of a system can be calculated so
that energy might be stored or put to use. For example, before any particular
bungee-cord jumper takes the plunge, someone (probably a mechanical engi-
neer) must determine the correct cord to be used by calculating the gravitational
and elastic potential energies that can be expected.Then the jump is only thrilling
and not fatal.

Work and Potential Energy
In Chapter 7 we discussed the relation between work and a change in kinetic energy.
Here we discuss the relation between work and a change in potential energy.

Let us throw a tomato upward (Fig. 8-2).We already know that as the tomato
rises, the work Wg done on the tomato by the gravitational force is negative
because the force transfers energy from the kinetic energy of the tomato. We can
now finish the story by saying that this energy is transferred by the gravitational
force to the gravitational potential energy of the tomato–Earth system.

The tomato slows, stops, and then begins to fall back down because of the
gravitational force. During the fall, the transfer is reversed: The work Wg done on
the tomato by the gravitational force is now positive—that force transfers energy
from the gravitational potential energy of the tomato–Earth system to the
kinetic energy of the tomato.

For either rise or fall, the change �U in gravitational potential energy is
defined as being equal to the negative of the work done on the tomato by the
gravitational force. Using the general symbol W for work, we write this as

�U � �W. (8-1)
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Figure 8-1 The kinetic energy of a bungee-
cord jumper increases during the free fall,
and then the cord begins to stretch, slow-
ing the jumper.

Rough Guides/Greg Roden/Getty Images, Inc.

Figure 8-2 A tomato is thrown upward. As it rises, the 
gravitational force does negative work on it, decreasing 
its kinetic energy. As the tomato descends, the 
gravitational force does positive work on it, increasing 
its kinetic energy.

Negative
work done 
by the 
gravitational
force

Positive
work done 
by the 
gravitational
force



This equation also applies to a block–spring system, as in Fig. 8-3. If we
abruptly shove the block to send it moving rightward, the spring force acts leftward
and thus does negative work on the block, transferring energy from the kinetic
energy of the block to the elastic potential energy of the spring–block system.The
block slows and eventually stops, and then begins to move leftward because the
spring force is still leftward. The transfer of energy is then reversed—it is from
potential energy of the spring–block system to kinetic energy of the block.

Conservative and Nonconservative Forces
Let us list the key elements of the two situations we just discussed:

1. The system consists of two or more objects.

2. A force acts between a particle-like object (tomato or block) in the system and
the rest of the system.

3. When the system configuration changes, the force does work (call it W1) on
the particle-like object, transferring energy between the kinetic energy K of
the object and some other type of energy of the system.

4. When the configuration change is reversed, the force reverses the energy
transfer, doing work W2 in the process.

In a situation in which W1 � �W2 is always true, the other type of energy is
a potential energy and the force is said to be a conservative force. As you might
suspect, the gravitational force and the spring force are both conservative (since
otherwise we could not have spoken of gravitational potential energy and elastic
potential energy, as we did previously).

A force that is not conservative is called a nonconservative force. The kinetic
frictional force and drag force are nonconservative. For an example, let us send
a block sliding across a floor that is not frictionless. During the sliding, a kinetic
frictional force from the floor slows the block by transferring energy from its
kinetic energy to a type of energy called thermal energy (which has to do with the
random motions of atoms and molecules). We know from experiment that this
energy transfer cannot be reversed (thermal energy cannot be transferred back
to kinetic energy of the block by the kinetic frictional force). Thus, although we
have a system (made up of the block and the floor), a force that acts between
parts of the system, and a transfer of energy by the force, the force is not conser-
vative.Therefore, thermal energy is not a potential energy.

When only conservative forces act on a particle-like object, we can greatly
simplify otherwise difficult problems involving motion of the object. Let’s next
develop a test for identifying conservative forces, which will provide one means
for simplifying such problems.

Path Independence of Conservative Forces
The primary test for determining whether a force is conservative or nonconserva-
tive is this: Let the force act on a particle that moves along any closed path, begin-
ning at some initial position and eventually returning to that position (so that the
particle makes a round trip beginning and ending at the initial position). The
force is conservative only if the total energy it transfers to and from the particle
during the round trip along this and any other closed path is zero. In other words:

1798-1 POTENTIAL ENERGY

The net work done by a conservative force on a particle moving around any
closed path is zero.

Figure 8-3 A block, attached to a spring and
initially at rest at x � 0, is set in motion
toward the right. (a) As the block moves
rightward (as indicated by the arrow), the
spring force does negative work on it.
(b) Then, as the block moves back toward
x � 0, the spring force does positive work
on it.

(a)

(b)

0

x

0

x

We know from experiment that the gravitational force passes this closed-
path test. An example is the tossed tomato of Fig. 8-2. The tomato leaves the
launch point with speed v0 and kinetic energy .The gravitational force acting1

2 mv0
2



Checkpoint 1
The figure shows three paths connecting points a
and b.A single force does the indicated work on
a particle moving along each path in the indicated
direction. On the basis of this information, is force

conservative?F
:

F
:

on the tomato slows it, stops it, and then causes it to fall back down. When the
tomato returns to the launch point, it again has speed v0 and kinetic energy 

Thus, the gravitational force transfers as much energy from the tomato dur-
ing the ascent as it transfers to the tomato during the descent back to the launch
point. The net work done on the tomato by the gravitational force during the
round trip is zero.

An important result of the closed-path test is that:

1
2 mv0

2.
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b

a

1

2

(a)

b

a

1

2

(b)

The force is 
conservative. Any 
choice of path 
between the points 
gives the same
amount of work.

And a round trip 
gives a total work 
of zero.

Figure 8-4 (a) As a conservative force acts
on it, a particle can move from point a to
point b along either path 1 or path 2.
(b) The particle moves in a round trip,
from point a to point b along path 1 and
then back to point a along path 2.

a

b

–60 J

60 J

60 J

The work done by a conservative force on a particle moving between two points
does not depend on the path taken by the particle.

For example, suppose that a particle moves from point a to point b in Fig. 8-4a
along either path 1 or path 2. If only a conservative force acts on the particle, then
the work done on the particle is the same along the two paths. In symbols, we can
write this result as

Wab,1 � Wab,2, (8-2)

where the subscript ab indicates the initial and final points, respectively, and the
subscripts 1 and 2 indicate the path.

This result is powerful because it allows us to simplify difficult problems
when only a conservative force is involved. Suppose you need to calculate the
work done by a conservative force along a given path between two points, and
the calculation is difficult or even impossible without additional information.
You can find the work by substituting some other path between those two points
for which the calculation is easier and possible.

Proof of Equation 8-2
Figure 8-4b shows an arbitrary round trip for a particle that is acted upon by a single
force. The particle moves from an initial point a to point b along path 1 and then
back to point a along path 2. The force does work on the particle as the particle
moves along each path. Without worrying about where positive work is done and
where negative work is done, let us just represent the work done from a to b along
path 1 as Wab,1 and the work done from b back to a along path 2 as Wba,2. If the force
is conservative, then the net work done during the round trip must be zero:

Wab,1 � Wba,2 � 0,
and thus

Wab,1 � �Wba,2. (8-3)

In words, the work done along the outward path must be the negative of the work
done along the path back.

Let us now consider the work Wab,2 done on the particle by the force when
the particle moves from a to b along path 2, as indicated in Fig. 8-4a. If the force is
conservative, that work is the negative of Wba,2:

Wab,2 � �Wba,2. (8-4)

Substituting Wab,2 for �Wba,2 in Eq. 8-3, we obtain

Wab,1 � Wab,2,

which is what we set out to prove.



Determining Potential Energy Values
Here we find equations that give the value of the two types of potential energy
discussed in this chapter: gravitational potential energy and elastic potential
energy. However, first we must find a general relation between a conservative
force and the associated potential energy.

Consider a particle-like object that is part of a system in which a conservative
force acts. When that force does work W on the object, the change �U in
the potential energy associated with the system is the negative of the work done.
We wrote this fact as Eq. 8-1 (�U � �W). For the most general case, in which the
force may vary with position, we may write the work W as in Eq. 7-32:

(8-5)

This equation gives the work done by the force when the object moves from
point xi to point xf, changing the configuration of the system. (Because the
force is conservative, the work is the same for all paths between those two
points.)

W � �xf

xi

F(x) dx.

F
:
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Sample Problem 8.01 Equivalent paths for calculating work, slippery cheese

The main lesson of this sample problem is this: It is perfectly
all right to choose an easy path instead of a hard path.
Figure 8-5a shows a 2.0 kg block of slippery cheese that
slides along a frictionless track from point a to point b. The
cheese travels through a total distance of 2.0 m along the
track, and a net vertical distance of 0.80 m. How much work is
done on the cheese by the gravitational force during the slide?

KEY IDEAS

(1) We cannot calculate the work by using Eq. 7-12 (Wg �
mgd cos f). The reason is that the angle f between the 
directions of the gravitational force and the displacement

varies along the track in an unknown way. (Even if we did
know the shape of the track and could calculate f along it,
the calculation could be very difficult.) (2) Because is a
conservative force, we can find the work by choosing some
other path between a and b—one that makes the calcula-
tion easy.

Calculations: Let us choose the dashed path in Fig. 8-5b; it
consists of two straight segments. Along the horizontal seg-
ment, the angle f is a constant 90	. Even though we do not
know the displacement along that horizontal segment, Eq. 7-12
tells us that the work Wh done there is

Wh � mgd cos 90	 � 0.

Along the vertical segment, the displacement d is 0.80 m
and, with and both downward, the angle f is a constantd

:
F
:

g

F
:

g

d
:

F
:

g

Additional examples, video, and practice available at WileyPLUS

a

(a) (b)

b

a

b

The gravitational force is conservative.
Any choice of path between the points
gives the same amount of work.

Figure 8-5 (a) A block of cheese slides along a frictionless track
from point a to point b. (b) Finding the work done on the cheese by
the gravitational force is easier along the dashed path than along
the actual path taken by the cheese; the result is the same for
both paths.

vertical part of the dashed path,

Wv � mgd cos 0	

� (2.0 kg)(9.8 m/s2)(0.80 m)(1) � 15.7 J.

The total work done on the cheese by as the cheese
moves from point a to point b along the dashed path is then

W � Wh � Wv � 0 � 15.7 J � 16 J. (Answer)

This is also the work done as the cheese slides along the
track from a to b.

F
:

g

0	. Thus, Eq. 7-12 gives us, for the work Wv done along the



Substituting Eq. 8-5 into Eq. 8-1, we find that the change in potential energy
due to the change in configuration is, in general notation,

(8-6)

Gravitational Potential Energy
We first consider a particle with mass m moving vertically along a y axis (the
positive direction is upward). As the particle moves from point yi to point yf,
the gravitational force does work on it. To find the corresponding change in
the gravitational potential energy of the particle–Earth system, we use Eq. 8-6
with two changes: (1) We integrate along the y axis instead of the x axis, because
the gravitational force acts vertically. (2) We substitute �mg for the force symbol F,
because has the magnitude mg and is directed down the y axis.We then have

which yields

�U � mg(yf � yi) � mg �y. (8-7)

Only changes �U in gravitational potential energy (or any other type of
potential energy) are physically meaningful. However, to simplify a calculation or
a discussion, we sometimes would like to say that a certain gravitational potential
value U is associated with a certain particle–Earth system when the particle is at
a certain height y.To do so, we rewrite Eq. 8-7 as

U � Ui � mg(y � yi). (8-8)

Then we take Ui to be the gravitational potential energy of the system when it is
in a reference configuration in which the particle is at a reference point yi.
Usually we take Ui � 0 and yi � 0. Doing this changes Eq. 8-8 to

U( y) � mgy (gravitational potential energy). (8-9)

This equation tells us:

�U � ��yf

yi

(�mg) dy � mg �yf

yi

dy � mg	y

yf

yi

,

F
:

g

F
:

g

�U � ��xf

xi

F(x) dx.
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Elastic Potential Energy
We next consider the block–spring system shown in Fig. 8-3, with the block
moving on the end of a spring of spring constant k. As the block moves from
point xi to point xf, the spring force Fx � �kx does work on the block. To find the
corresponding change in the elastic potential energy of the block–spring system,
we substitute �kx for F(x) in Eq. 8-6.We then have

or (8-10)

To associate a potential energy value U with the block at position x, we
choose the reference configuration to be when the spring is at its relaxed length
and the block is at xi � 0. Then the elastic potential energy Ui is 0, and Eq. 8-10

�U � 1
2 kxf

2 � 1
2 kxi

2.

�U � ��xf

xi

(�kx) dx � k �xf

xi

x dx � 1
2k	x2


xf

xi

,

The gravitational potential energy associated with a particle–Earth system
depends only on the vertical position y (or height) of the particle relative to the
reference position y � 0, not on the horizontal position.
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Checkpoint 2
A particle is to move along an x axis from x � 0 to x1 while a conser-
vative force, directed along the x axis, acts on the particle.The figure
shows three situations in which the x component of that force varies
with x.The force has the same maximum magnitude F1 in all three sit-
uations. Rank the situations according to the change in the associated
potential energy during the particle’s motion, most positive first.

F1 F1

–F1

x1

x1x1

(1) (2) (3)

the ground, (3) at the limb, and (4) 1.0 m above the limb?
Take the gravitational potential energy to be zero at y � 0.

KEY IDEA

Once we have chosen the reference point for y � 0, we can
calculate the gravitational potential energy U of the system
relative to that reference point with Eq. 8-9.

Calculations: For choice (1) the sloth is at y � 5.0 m, and

U � mgy � (2.0 kg)(9.8 m/s2)(5.0 m)

� 98 J. (Answer)

For the other choices, the values of U are

(2) U � mgy � mg(2.0 m) � 39 J,
(3) U � mgy � mg(0) � 0 J,
(4) U � mgy � mg(�1.0 m)

� �19.6 J � �20 J. (Answer)

(b) The sloth drops to the ground. For each choice of refer-
ence point, what is the change �U in the potential energy of
the sloth–Earth system due to the fall?

KEY IDEA

The change in potential energy does not depend on the
choice of the reference point for y � 0; instead, it depends
on the change in height �y.

Calculation: For all four situations, we have the same �y �
�5.0 m.Thus, for (1) to (4), Eq. 8-7 tells us that

�U � mg �y � (2.0 kg)(9.8 m/s2)(�5.0 m)

� �98 J. (Answer)

Sample Problem 8.02 Choosing reference level for gravitational potential energy, sloth

Here is an example with this lesson plan: Generally you can
choose any level to be the reference level, but once chosen,
be consistent. A 2.0 kg sloth hangs 5.0 m above the ground
(Fig. 8-6).

(a) What is the gravitational potential energy U of the
sloth–Earth system if we take the reference point y � 0 to be
(1) at the ground, (2) at a balcony floor that is 3.0 m above

Additional examples, video, and practice available at WileyPLUS

0 –3 –5 –6 

3 0 –2 –3 

5 2 0 

6 3 1 0 

(1) (2) (3) (4) 

Figure 8-6 Four choices of reference point y � 0. Each y axis is marked
in units of meters. The choice affects the value of the potential energy
U of the sloth–Earth system. However, it does not affect the change
�U in potential energy of the system if the sloth moves by, say, falling.

becomes

which gives us

(elastic potential energy). (8-11)U(x) � 1
2 kx2

U � 0 � 1
2 kx2 � 0,



Conservation of Mechanical Energy
The mechanical energy Emec of a system is the sum of its potential energy U and
the kinetic energy K of the objects within it:

Emec � K � U (mechanical energy). (8-12)

In this module, we examine what happens to this mechanical energy when only
conservative forces cause energy transfers within the system—that is, when
frictional and drag forces do not act on the objects in the system. Also, we shall
assume that the system is isolated from its environment; that is, no external force
from an object outside the system causes energy changes inside the system.

When a conservative force does work W on an object within the system, that
force transfers energy between kinetic energy K of the object and potential
energy U of the system. From Eq. 7-10, the change �K in kinetic energy is

�K � W (8-13)

and from Eq. 8-1, the change �U in potential energy is

�U � �W. (8-14)

Combining Eqs. 8-13 and 8-14, we find that

�K � ��U. (8-15)

In words, one of these energies increases exactly as much as the other decreases.
We can rewrite Eq. 8-15 as

K2 � K1 � �(U2 � U1), (8-16)

where the subscripts refer to two different instants and thus to two different
arrangements of the objects in the system. Rearranging Eq. 8-16 yields

K2 � U2 � K1 � U1 (conservation of mechanical energy). (8-17)

In words, this equation says:

�the sum of K and U for
any state of a system � � � the sum of K and U for

any other state of the system�,
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8-2 CONSERVATION OF MECHANICAL ENERGY

After reading this module, you should be able to . . .

8.05 After first clearly defining which objects form a system,
identify that the mechanical energy of the system is the
sum of the kinetic energies and potential energies of those
objects.

8.06 For an isolated system in which only conservative forces
act, apply the conservation of mechanical energy to relate
the initial potential and kinetic energies to the potential and
kinetic energies at a later instant.

Learning Objectives

Key Ideas
● The mechanical energy Emec of a system is the sum of its 
kinetic energy K and potential energy U:

Emec � K � U.

● An isolated system is one in which no external force causes
energy changes. If only conservative forces do work within
an isolated system, then the mechanical energy Emec of the

system cannot change. This principle of conservation of 
mechanical energy is written as

K2 � U2 � K1 � U1,

in which the subscripts refer to different instants during an
energy transfer process. This conservation principle can also
be written as

�Emec � �K � �U � 0.

©AP/Wide World Photos

In olden days, a person would be tossed
via a blanket to be able to see farther
over the flat terrain. Nowadays, it is
done just for fun. During the ascent of
the person in the photograph, energy is
transferred from kinetic energy to gravita-
tional potential energy. The maximum
height is reached when that transfer is
complete. Then the transfer is reversed
during the fall.



when the system is isolated and only conservative forces act on the objects in the
system. In other words:

1858-2 CONSERVATION OF MECHANICAL ENERGY

In an isolated system where only conservative forces cause energy changes, the
kinetic energy and potential energy can change, but their sum, the mechanical
energy Emec of the system, cannot change.

When the mechanical energy of a system is conserved, we can relate the sum of kinetic
energy and potential energy at one instant to that at another instant without consider-
ing the intermediate motion and without finding the work done by the forces involved.

This result is called the principle of conservation of mechanical energy. (Now you
can see where conservative forces got their name.) With the aid of Eq. 8-15, we
can write this principle in one more form, as

�Emec � �K � �U � 0. (8-18)

The principle of conservation of mechanical energy allows us to solve
problems that would be quite difficult to solve using only Newton’s laws:

Figure 8-7 shows an example in which the principle of conservation of
mechanical energy can be applied: As a pendulum swings, the energy of the

Figure 8-7 A pendulum, with its mass 
concentrated in a bob at the lower end,
swings back and forth. One full cycle of
the motion is shown. During the cycle the
values of the potential and kinetic ener-
gies of the pendulum–Earth system vary
as the bob rises and falls, but the mechani-
cal energy Emec of the system remains 
constant. The energy Emec can be
described as continuously shifting between
the kinetic and potential forms. In stages
(a) and (e), all the energy is kinetic energy.
The bob then has its greatest speed and is
at its lowest point. In stages (c) and (g), all
the energy is potential energy. The bob
then has zero speed and is at its highest
point. In stages (b), (d), ( f ), and (h), half
the energy is kinetic energy and half is
potential energy. If the swinging involved
a frictional force at the point where the
pendulum is attached to the ceiling, or a
drag force due to the air, then Emec would
not be conserved, and eventually the 
pendulum would stop.

(a)

KU

(b)

KU

(c)

KU

(d)

KU

(e)

KU

(h)

KU

( f )

KU

(g)

KU

v = +vmax

v = 0 

v = –vmax

v = 0 

v

v

v

v

v

v

All potential
energy

All potential
energy

The total energy
does not change
(it is conserved ).

All kinetic energy

All kinetic energy



pendulum–Earth system is transferred back and forth between kinetic energy K
and gravitational potential energy U, with the sum K � U being constant. If we
know the gravitational potential energy when the pendulum bob is at its highest
point (Fig. 8-7c), Eq. 8-17 gives us the kinetic energy of the bob at the lowest
point (Fig. 8-7e).

For example, let us choose the lowest point as the reference point, with the
gravitational potential energy U2 � 0. Suppose then that the potential energy at
the highest point is U1 � 20 J relative to the reference point. Because the bob mo-
mentarily stops at its highest point, the kinetic energy there is K1 � 0. Putting these
values into Eq. 8-17 gives us the kinetic energy K2 at the lowest point:

K2 � 0 � 0 � 20 J or K2 � 20 J.

Note that we get this result without considering the motion between the highest
and lowest points (such as in Fig. 8-7d) and without finding the work done by any
forces involved in the motion.
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Checkpoint 3
The figure shows four 
situations—one in
which an initially sta-
tionary block is dropped
and three in which the
block is allowed to slide
down frictionless ramps.
(a) Rank the situations 
according to the kinetic energy of the block at point B, greatest first. (b) Rank them
according to the speed of the block at point B, greatest first.

A

B B B B 

(1) (2) (3) (4)

System: Because the only force doing work on the child
is the gravitational force, we choose the child–Earth system
as our system, which we can take to be isolated.

Thus, we have only a conservative force doing work in
an isolated system, so we can use the principle of conserva-
tion of mechanical energy.

Calculations: Let the mechanical energy be Emec,t when the
child is at the top of the slide and Emec,b when she is at the
bottom.Then the conservation principle tells us

Emec,b � Emec,t. (8-19)

Sample Problem 8.03 Conservation of mechanical energy, water slide

The huge advantage of using the conservation of energy in-
stead of Newton’s laws of motion is that we can jump from
the initial state to the final state without considering all the
intermediate motion. Here is an example. In Fig. 8-8, a child
of mass m is released from rest at the top of a water slide,
at height h � 8.5 m above the bottom of the slide.
Assuming that the slide is frictionless because of the water
on it, find the child’s speed at the bottom of the slide.

KEY IDEAS

(1) We cannot find her speed at the bottom by using her ac-
celeration along the slide as we might have in earlier chap-
ters because we do not know the slope (angle) of the slide.
However, because that speed is related to her kinetic en-
ergy, perhaps we can use the principle of conservation of
mechanical energy to get the speed. Then we would not
need to know the slope. (2) Mechanical energy is conserved
in a system if the system is isolated and if only conservative
forces cause energy transfers within it. Let’s check.

Forces: Two forces act on the child. The gravitational
force, a conservative force, does work on her. The normal
force on her from the slide does no work because its direc-
tion at any point during the descent is always perpendicular
to the direction in which the child moves.

Figure 8-8 A child slides down a water slide as she descends a
height h.

h

The total mechanical 
energy at the top
is equal to the total 
at the bottom.



Reading a Potential Energy Curve
Once again we consider a particle that is part of a system in which a conservative
force acts. This time suppose that the particle is constrained to move along an
x axis while the conservative force does work on it. We want to plot the potential
energy U(x) that is associated with that force and the work that it does, and then
we want to consider how we can relate the plot back to the force and to the kinetic
energy of the particle. However, before we discuss such plots, we need one more
relationship between the force and the potential energy.

Finding the Force Analytically
Equation 8-6 tells us how to find the change �U in potential energy between two
points in a one-dimensional situation if we know the force F(x). Now we want to

1878-3 READING A POTENTIAL ENERGY CURVE

To show both kinds of mechanical energy, we have

Kb � Ub � Kt � Ut, (8-20)

or

Dividing by m and rearranging yield

Putting vt � 0 and yt � yb � h leads to

(Answer)� 13 m/s.

vb � 12gh � 1(2)(9.8 m/s2)(8.5 m)

vb
2 � vt

2 � 2g(yt � yb).

1
2 mvb

2 � mgyb � 1
2 mvt

2 � mgyt .

Additional examples, video, and practice available at WileyPLUS

8-3 READING A POTENTIAL ENERGY CURVE

After reading this module, you should be able to  . . .

8.07 Given a particle’s potential energy as a function of its
position x, determine the force on the particle.

8.08 Given a graph of potential energy versus x, determine
the force on a particle.

8.09 On a graph of potential energy versus x, superimpose a
line for a particle’s mechanical energy and determine the
particle’s kinetic energy for any given value of x.

8.10 If a particle moves along an x axis, use a potential-
energy graph for that axis and the conservation of mechan-
ical energy to relate the energy values at one position to
those at another position.

8.11 On a potential-energy graph, identify any turning points
and any regions where the particle is not allowed because
of energy requirements.

8.12 Explain neutral equilibrium, stable equilibrium, and 
unstable equilibrium.

Learning Objectives

Key Ideas
● If we know the potential energy function U(x) for a system
in which a one-dimensional force F(x) acts on a particle, we
can find the force as

● If U(x) is given on a graph, then at any value of x, the force
F(x) is the negative of the slope of the curve there and the

F(x) � �
dU(x)

dx
.

kinetic energy of the particle is given by

K(x) � Emec � U(x),

where Emec is the mechanical energy of the system.
● A turning point is a point x at which the particle reverses its
motion (there, K � 0).
● The particle is in equilibrium at points where the slope of
the U(x) curve is zero (there, F(x) � 0).

This is the same speed that the child would reach if she fell
8.5 m vertically. On an actual slide, some frictional forces
would act and the child would not be moving quite so fast.

Comments: Although this problem is hard to solve directly
with Newton’s laws, using conservation of mechanical en-
ergy makes the solution much easier. However, if we were
asked to find the time taken for the child to reach the bot-
tom of the slide, energy methods would be of no use; we
would need to know the shape of the slide, and we would
have a difficult problem.



go the other way; that is, we know the potential energy function U(x) and want
to find the force.

For one-dimensional motion, the work W done by a force that acts on a parti-
cle as the particle moves through a distance �x is F(x) �x. We can then write
Eq. 8-1 as

�U(x) � �W � �F(x) �x. (8-21)

Solving for F(x) and passing to the differential limit yield

(one-dimensional motion), (8-22)

which is the relation we sought.
We can check this result by putting , which is the elastic poten-

tial energy function for a spring force. Equation 8-22 then yields, as expected,
F(x) � �kx, which is Hooke’s law. Similarly, we can substitute U(x) � mgx,
which is the gravitational potential energy function for a particle–Earth system,
with a particle of mass m at height x above Earth’s surface. Equation 8-22 then
yields F � �mg, which is the gravitational force on the particle.

The Potential Energy Curve
Figure 8-9a is a plot of a potential energy function U(x) for a system in which a
particle is in one-dimensional motion while a conservative force F(x) does work
on it.We can easily find F(x) by (graphically) taking the slope of the U(x) curve at
various points. (Equation 8-22 tells us that F(x) is the negative of the slope of the
U(x) curve.) Figure 8-9b is a plot of F(x) found in this way.

Turning Points
In the absence of a nonconservative force, the mechanical energy E of a system
has a constant value given by

U(x) � K(x) � Emec. (8-23)

Here K(x) is the kinetic energy function of a particle in the system (this K(x)
gives the kinetic energy as a function of the particle’s location x). We may
rewrite Eq. 8-23 as

K(x) � Emec � U(x). (8-24)

Suppose that Emec (which has a constant value, remember) happens to be 5.0 J. It
would be represented in Fig. 8-9c by a horizontal line that runs through the value
5.0 J on the energy axis. (It is, in fact, shown there.)

Equation 8-24 and Fig. 8-9d tell us how to determine the kinetic energy K for
any location x of the particle: On the U(x) curve, find U for that location x and
then subtract U from Emec. In Fig. 8-9e for example, if the particle is at any point
to the right of x5, then K � 1.0 J. The value of K is greatest (5.0 J) when the parti-
cle is at x2 and least (0 J) when the particle is at x1.

Since K can never be negative (because v2 is always positive), the particle can
never move to the left of x1, where Emec � U is negative. Instead, as the particle
moves toward x1 from x2, K decreases (the particle slows) until K � 0 at x1 (the
particle stops there).

Note that when the particle reaches x1, the force on the particle, given by
Eq. 8-22, is positive (because the slope dU/dx is negative). This means that the
particle does not remain at x1 but instead begins to move to the right, opposite its
earlier motion. Hence x1 is a turning point, a place where K � 0 (because U � E)
and the particle changes direction. There is no turning point (where K � 0) on
the right side of the graph. When the particle heads to the right, it will continue
indefinitely.

U(x) � 1
2 kx2

F(x) � �
dU(x)

dx
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xx2x1 x3 x4 x5(a)

U(x)
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–

x

(b)

x2x1 x3 x4 x5

F  (N)

Mild force, –x direction

Strong force, +x direction

This is a plot of the potential
energy U versus position x.

Force is equal to the negative of
the slope of the U(x ) plot.
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2

1

U  (J), Emec  (J)

xx2x1 x3 x4 x5(c)

Emec = 5.0 J

U(x)

The flat line shows a given value of
the total mechanical energy Emec.

The difference between the total energy
and the potential energy is the
kinetic energy K.
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xx2x1 x3 x4 x5(d)

Emec = 5.0 J
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K
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(f ) x2x1 x3 x4 x5

U  (J), Emec  (J)
At this position, K is greatest and
the particle is moving the fastest.

At this position, K is zero (a turning point).
The particle cannot go farther to the left.

For either of these three choices for Emec,
the particle is trapped (cannot escape
left or right).

6
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U  (J), Emec  (J)

xx2x1 x3 x4 x5(e)

Emec = 5.0 J

K = 1.0 J at x > x5

K = 5.0 J at x2

A

Figure 8-9 (a) A plot of U(x), the potential energy function of a system containing a particle confined to move along an x axis. There is no
friction, so mechanical energy is conserved. (b) A plot of the force F(x) acting on the particle, derived from the potential energy plot by
taking its slope at various points. (c)–(e) How to determine the kinetic energy. ( f ) The U(x) plot of (a) with three possible values of Emec

shown. In WileyPLUS, this figure is available as an animation with voiceover.



Equilibrium Points
Figure 8-9f shows three different values for Emec superposed on the plot of the
potential energy function U(x) of Fig. 8-9a. Let us see how they change the situa-
tion. If Emec � 4.0 J (purple line), the turning point shifts from x1 to a point
between x1 and x2. Also, at any point to the right of x5, the system’s mechanical
energy is equal to its potential energy; thus, the particle has no kinetic energy and
(by Eq. 8-22) no force acts on it, and so it must be stationary. A particle at such a
position is said to be in neutral equilibrium. (A marble placed on a horizontal
tabletop is in that state.)

If Emec � 3.0 J (pink line), there are two turning points: One is between
x1 and x2, and the other is between x4 and x5. In addition, x3 is a point at which
K � 0. If the particle is located exactly there, the force on it is also zero, and the
particle remains stationary. However, if it is displaced even slightly in either
direction, a nonzero force pushes it farther in the same direction, and the particle
continues to move. A particle at such a position is said to be in unstable equilib-
rium. (A marble balanced on top of a bowling ball is an example.)

Next consider the particle’s behavior if Emec � 1.0 J (green line). If we place it
at x4, it is stuck there. It cannot move left or right on its own because to do so would
require a negative kinetic energy. If we push it slightly left or right, a restoring force
appears that moves it back to x4. A particle at such a position is said to be in stable
equilibrium. (A marble placed at the bottom of a hemispherical bowl is an example.)
If we place the particle in the cup-like potential well centered at x2, it is between two
turning points. It can still move somewhat, but only partway to x1 or x3.

190 CHAPTER 8 POTENTIAL ENERGY AND CONSERVATION OF ENERGY

Checkpoint 4
The figure gives the potential energy function 
U(x) for a system in which a particle is in one-
dimensional motion. (a) Rank regions AB, BC, and
CD according to the magnitude of the force on the
particle, greatest first. (b) What is the direction of
the force when the particle is in region AB?

U
(x

) 
(J

) 5

3

1

A B C D 
x

Calculations: At , the particle has kinetic energy

Because the potential energy there is , the mechanical
energy is

.

This value for is plotted as a horizontal line in Fig. 8-10a.
From that figure we see that at , the potential 
energy is . The kinetic energy is the difference
between and :

.

Because , we find

. (Answer)

(b) Where is the particle’s turning point located?

v1 � 3.0 m/s

K1 � 1
2 mv1

2

K1 � Emec � U1 � 16.0 J � 7.0 J � 9.0 J

U1Emec

K1U1 � 7.0 J
x � 4.5 m

Emec

Emec � K0 � U0 � 16.0 J � 0 � 16.0 J

U � 0

� 16.0 J.

K0 � 1
2mv2

0 � 1
2(2.00 kg)(4.00 m/s)2

x � 6.5 m

Sample Problem 8.04 Reading a potential energy graph

A 2.00 kg particle moves along an x axis in one-dimensional
motion while a conservative force along that axis acts on it.
The potential energy U(x) associated with the force is plot-
ted in Fig. 8-10a. That is, if the particle were placed at any
position between and , it would have the
plotted value of U. At , the particle has velocity

.

(a) From Fig. 8-10a, determine the particle’s speed at
.

KEY IDEAS

(1) The particle’s kinetic energy is given by Eq. 7-1
( ). (2) Because only a conservative force acts on
the particle, the mechanical energy is con-
served as the particle moves. (3) Therefore, on a plot of U(x)
such as Fig. 8-10a, the kinetic energy is equal to the differ-
ence between and U.Emec

Emec (� K � U)
K � 1

2mv2

x1 � 4.5 m

îv0
: � (�4.00 m/s)

x � 6.5 m
x � 7.00 mx � 0



Additional examples, video, and practice available at WileyPLUS

1918-4 WORK DONE ON A SYSTEM BY AN EXTERNAL FORCE

KEY IDEA

The turning point is where the force momentarily stops and
then reverses the particle’s motion. That is, it is where the
particle momentarily has and thus .

Calculations: Because K is the difference between
, we want the point in Fig. 8-10a where the plot of

U rises to meet the horizontal line of , as shown in Fig.
8-10b. Because the plot of U is a straight line in Fig. 8-10b,
we can draw nested right triangles as shown and then write
the proportionality of distances

,

which gives us .Thus, the turning point is at

. (Answer)

(c) Evaluate the force acting on the particle when it is in the
region .

KEY IDEA

The force is given by Eq. 8-22 (F(x) � �dU(x)/dx):The force
is equal to the negative of the slope on a graph of U(x).

Calculations: For the graph of Fig. 8-10b, we see that for
the range the force is

. (Answer)F � �
20 J � 7.0 J

1.0 m � 4.0 m
� 4.3 N

1.0 m � x � 4.0 m

1.9 m � x � 4.0 m

x � 4.0 m � d � 1.9 m

d � 2.08 m

16 � 7.0
d

�
20 � 7.0
4.0 � 1.0

Emec

Emec and U

K � 0v � 0

Thus, the force has magnitude 4.3 N and is in the positive 
direction of the x axis. This result is consistent with the fact
that the initially leftward-moving particle is stopped by the
force and then sent rightward.

Figure 8-10 (a) A plot of potential energy U versus position x.
(b) A section of the plot used to find where the particle turns
around.

Kinetic energy is the difference
between the total energy and
the potential energy.

K1

K0

Emec = 16 J
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(b)

U ( J)

The kinetic energy is zero
at the turning point (the
particle speed is zero).

8-4 WORK DONE ON A SYSTEM BY AN EXTERNAL FORCE

After reading this module, you should be able to . . .
8.13 When work is done on a system by an external force

with no friction involved, determine the changes in kinetic
energy and potential energy.

8.14 When work is done on a system by an external force
with friction involved, relate that work to the changes in
kinetic energy, potential energy, and thermal energy.

● Work W is energy transferred to or from a system by means
of an external force acting on the system. 

● When more than one force acts on a system, their net work
is the transferred energy. 

● When friction is not involved, the work done on the system
and the change �Emec in the mechanical energy of the system
are equal:

W � �Emec � �K � �U.

● When a kinetic frictional force acts within the system, then
the thermal energy Eth of the system changes. (This energy is
associated with the random motion of atoms and molecules
in the system.) The work done on the system is then

W � �Emec � �Eth.

● The change �Eth is related to the magnitude fk of the frictional
force and the magnitude d of the displacement caused by the
external force by

�Eth � fkd.

Learning Objectives

Key Ideas



Work Done on a System by an External Force
In Chapter 7, we defined work as being energy transferred to or from an object
by means of a force acting on the object. We can now extend that definition to an
external force acting on a system of objects.
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Work is energy transferred to or from a system by means of an external force 
acting on that system.

Figure 8-11a represents positive work (a transfer of energy to a system), and
Fig. 8-11b represents negative work (a transfer of energy from a system). When
more than one force acts on a system, their net work is the energy transferred to
or from the system.

These transfers are like transfers of money to and from a bank account. If a
system consists of a single particle or particle-like object, as in Chapter 7, the
work done on the system by a force can change only the kinetic energy of the
system. The energy statement for such transfers is the work–kinetic energy theo-
rem of Eq. 7-10 (�K � W); that is, a single particle has only one energy account,
called kinetic energy. External forces can transfer energy into or out of that
account. If a system is more complicated, however, an external force can change
other forms of energy (such as potential energy); that is, a more complicated
system can have multiple energy accounts.

Let us find energy statements for such systems by examining two basic situa-
tions, one that does not involve friction and one that does.

No Friction Involved
To compete in a bowling-ball-hurling contest, you first squat and cup your hands
under the ball on the floor.Then you rapidly straighten up while also pulling your
hands up sharply, launching the ball upward at about face level. During your
upward motion, your applied force on the ball obviously does work; that is, it is an
external force that transfers energy, but to what system?

To answer, we check to see which energies change. There is a change �K in
the ball’s kinetic energy and, because the ball and Earth become more sepa-
rated, there is a change �U in the gravitational potential energy of the
ball–Earth system. To include both changes, we need to consider the ball –Earth
system. Then your force is an external force doing work on that system, and the
work is

W � �K � �U, (8-25)

or W � �Emec (work done on system, no friction involved), (8-26)

where �Emec is the change in the mechanical energy of the system. These two
equations, which are represented in Fig. 8-12, are equivalent energy statements
for work done on a system by an external force when friction is not involved.

Friction Involved
We next consider the example in Fig. 8-13a. A constant horizontal force pulls a
block along an x axis and through a displacement of magnitude d, increasing the
block’s velocity from to . During the motion, a constant kinetic frictional
force from the floor acts on the block. Let us first choose the block as our
system and apply Newton’s second law to it. We can write that law for compo-
nents along the x axis (Fnet, x � max) as

F � fk � ma. (8-27)

f
:

k

v:v:0

F
:

Positive W

System

(a)

Negative W

System

(b)

Figure 8-11 (a) Positive work W done on an
arbitrary system means a transfer of
energy to the system. (b) Negative work
W means a transfer of energy from the
system.

W
ΔEmec = ΔK + ΔU

Ball–Earth
system

Your lifting force
transfers energy to
kinetic energy and
potential energy.

Figure 8-12 Positive work W is done on a
system of a bowling ball and Earth, caus-
ing a change �Emec in the mechanical
energy of the system, a change �K in the
ball’s kinetic energy, and a change �U in
the system’s gravitational potential energy.



Because the forces are constant, the acceleration is also constant. Thus, we can
use Eq. 2-16 to write

Solving this equation for a, substituting the result into Eq. 8-27, and rearranging
then give us

(8-28)

or, because for the block,

Fd � �K � fkd. (8-29)

In a more general situation (say, one in which the block is moving up a ramp), there
can be a change in potential energy.To include such a possible change, we general-
ize Eq. 8-29 by writing

Fd � �Emec � fkd. (8-30)

By experiment we find that the block and the portion of the floor along
which it slides become warmer as the block slides. As we shall discuss in
Chapter 18, the temperature of an object is related to the object’s thermal energy
Eth (the energy associated with the random motion of the atoms and molecules in
the object). Here, the thermal energy of the block and floor increases because
(1) there is friction between them and (2) there is sliding. Recall that friction is
due to the cold-welding between two surfaces. As the block slides over the floor,
the sliding causes repeated tearing and re-forming of the welds between the
block and the floor, which makes the block and floor warmer. Thus, the sliding
increases their thermal energy Eth.

Through experiment, we find that the increase �Eth in thermal energy is
equal to the product of the magnitudes fk and d:

�Eth � fkd (increase in thermal energy by sliding). (8-31)

Thus, we can rewrite Eq. 8-30 as

Fd � �Emec � �Eth. (8-32)

Fd is the work W done by the external force (the energy transferred by the
force), but on which system is the work done (where are the energy transfers made)?
To answer, we check to see which energies change. The block’s mechanical energy

F
:

1
2 mv2 � 1

2 mv0
2 � �K

Fd � 1
2 mv2 � 1

2 mv0
2 � fkd

v2 � v0
2 � 2ad.

a:
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fk

v0 v

F

d

x

(a)

The applied force supplies energy.
The frictional force transfers some
of it to thermal energy.

(b)

Block–floor
system

ΔEmec

ΔEth

W

So, the work done by the applied
force goes into kinetic energy
and also thermal energy.

Figure 8-13 (a) A block is pulled across a floor by force while a kinetic frictional
force opposes the motion. The block has velocity at the start of a displacement 
and velocity at the end of the displacement. (b) Positive work W is done on the
block–floor system by force , resulting in a change �Emec in the block’s mechanical
energy and a change �Eth in the thermal energy of the block and floor.

F
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Checkpoint 5
In three trials, a block is pushed
by a horizontal applied force
across a floor that is not friction-
less, as in Fig. 8-13a.The magni-
tudes F of the applied force and
the results of the pushing on the
block’s speed are given in the
table. In all three trials, the block is pushed through the same distance d. Rank the
three trials according to the change in the thermal energy of the block and floor that
occurs in that distance d, greatest first.

Trial F Result on Block’s Speed

a 5.0 N decreases
b 7.0 N remains constant
c 8.0 N increases

be friction and a change �Eth in thermal energy of the crate
and the floor. Therefore, the system on which the work is
done is the crate–floor system, because both energy
changes occur in that system.

(b) What is the increase �Eth in the thermal energy of the
crate and floor?

KEY IDEA

We can relate �Eth to the work W done by with the energy
statement of Eq. 8-33 for a system that involves friction:

W � �Emec � �Eth. (8-34)

Calculations: We know the value of W from (a). The
change �Emec in the crate’s mechanical energy is just the
change in its kinetic energy because no potential energy
changes occur, so we have

Substituting this into Eq.8-34 and solving for �Eth,we find

(Answer)

Without further experiments, we cannot say how much of
this thermal energy ends up in the crate and how much in
the floor.We simply know the total amount.

� 22.2 J � 22 J.

� 20 J � 1
2(14 kg)[(0.20 m/s)2 � (0.60 m/s)2]

�Eth � W � (1
2 mv2 � 1

2 mv0
2) � W � 1

2 m(v2 � v0
2)

�Emec � �K � 1
2 mv2 � 1

2 mv0
2.

F
:

Sample Problem 8.05 Work, friction, change in thermal energy, cabbage heads

A food shipper pushes a wood crate of cabbage heads (total
mass m 14 kg) across a concrete floor with a constant
horizontal force of magnitude 40 N. In a straight-line dis-
placement of magnitude d 0.50 m, the speed of the crate
decreases from v0 0.60 m/s to v 0.20 m/s.

(a) How much work is done by force , and on what system
does it do the work?

KEY IDEA

Because the applied force is constant, we can calculate
the work it does by using Eq. 7-7 ( ).

Calculation: Substituting given data, including the fact that
force and displacement are in the same direction, we
find

W � Fd cos f � (40 N)(0.50 m) cos 0	

� 20 J. (Answer)

Reasoning: To determine the system on which the work is
done, let’s check which energies change. Because the crate’s
speed changes, there is certainly a change �K in the crate’s
kinetic energy. Is there friction between the floor and the
crate, and thus a change in thermal energy? Note that and
the crate’s velocity have the same direction. Thus, if there is
no friction, then should be accelerating the crate to a
greater speed. However, the crate is slowing, so there must

F
:

F
:

d
:

F
:

W � Fd cos �
F
:

F
:

��
�

F
:

�

Additional examples, video, and practice available at WileyPLUS

changes, and the thermal energies of the block and floor also change. Therefore, the
work done by force is done on the block–floor system.That work is

W � �Emec � �Eth (work done on system, friction involved). (8-33)

This equation, which is represented in Fig. 8-13b, is the energy statement for the
work done on a system by an external force when friction is involved.

F
:



Conservation of Energy
We now have discussed several situations in which energy is transferred to or
from objects and systems, much like money is transferred between accounts.
In each situation we assume that the energy that was involved could always be
accounted for; that is, energy could not magically appear or disappear. In more
formal language, we assumed (correctly) that energy obeys a law called the law of
conservation of energy, which is concerned with the total energy E of a system.
That total is the sum of the system’s mechanical energy, thermal energy, and any
type of internal energy in addition to thermal energy. (We have not yet discussed
other types of internal energy.) The law states that

1958-5 CONSERVATION OF ENERGY

The total energy E of a system can change only by amounts of energy that are
transferred to or from the system.

8-5 CONSERVATION OF ENERGY

After reading this module, you should be able to . . .

8.15 For an isolated system (no net external force), apply the
conservation of energy to relate the initial total energy 
(energies of all kinds) to the total energy at a later instant.

8.16 For a nonisolated system, relate the work done on the
system by a net external force to the changes in the vari-
ous types of energies within the system.

8.17 Apply the relationship between average power, the 
associated energy transfer, and the time interval in which
that transfer is made.

8.18 Given an energy transfer as a function of time (either as
an equation or a graph), determine the instantaneous
power (the transfer at any given instant).   

Learning Objectives

● The total energy E of a system (the sum of its mechanical
energy and its internal energies, including thermal energy)
can change only by amounts of energy that are transferred to
or from the system. This experimental fact is known as the law
of conservation of energy. 

● If work W is done on the system, then

W � �E � �Emec � �Eth � �Eint.

If the system is isolated (W � 0), this gives

�Emec � �Eth � �Eint � 0

and Emec,2 � Emec,1 � �Eth � �Eint,

where the subscripts 1 and 2 refer to two different instants.

● The power due to a force is the rate at which that force
transfers energy. If an amount of energy �E is transferred by
a force in an amount of time �t, the average power of the
force is

● The instantaneous power due to a force is

On a graph of energy E versus time t, the power is the slope
of the plot at any given time.

P �
dE
dt

.

Pavg �
�E
�t

.

Key Ideas

The only type of energy transfer that we have considered is work W done on a
system by an external force.Thus, for us at this point, this law states that

W � �E � �Emec � �Eth � �Eint, (8-35)

where �Emec is any change in the mechanical energy of the system, �Eth is any
change in the thermal energy of the system, and �Eint is any change in any
other type of internal energy of the system. Included in �Emec are changes �K in
kinetic energy and changes �U in potential energy (elastic, gravitational, or any
other type we might find).

This law of conservation of energy is not something we have derived from
basic physics principles. Rather, it is a law based on countless experiments.



Scientists and engineers have never found an exception to it. Energy simply can-
not magically appear or disappear.

Isolated System
If a system is isolated from its environment, there can be no energy transfers to or
from it. For that case, the law of conservation of energy states:
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The total energy E of an isolated system cannot change.

Many energy transfers may be going on within an isolated system — between,
say, kinetic energy and a potential energy or between kinetic energy and ther-
mal energy. However, the total of all the types of energy in the system cannot
change. Here again, energy cannot magically appear or disappear.

We can use the rock climber in Fig. 8-14 as an example, approximating
him, his gear, and Earth as an isolated system. As he rappels down the rock
face, changing the configuration of the system, he needs to control the transfer
of energy from the gravitational potential energy of the system. (That energy
cannot just disappear.) Some of it is transferred to his kinetic energy.
However, he obviously does not want very much transferred to that type or he
will be moving too quickly, so he has wrapped the rope around metal rings to
produce friction between the rope and the rings as he moves down. The sliding
of the rings on the rope then transfers the gravitational potential energy of the
system to thermal energy of the rings and rope in a way that he can control.
The total energy of the climber – gear – Earth system (the total of its gravita-
tional potential energy, kinetic energy, and thermal energy) does not change
during his descent.

For an isolated system, the law of conservation of energy can be written in
two ways. First, by setting W � 0 in Eq. 8-35, we get

�Emec � �Eth � �Eint � 0 (isolated system). (8-36)

We can also let �Emec � Emec,2 � Emec,1, where the subscripts 1 and 2 refer to two
different instants—say, before and after a certain process has occurred.Then Eq.
8-36 becomes

Emec,2 � Emec,1 � �Eth � �Eint. (8-37)

Equation 8-37 tells us:

Figure 8-14 To descend, the rock climber
must transfer energy from the gravitational
potential energy of a system consisting of
him, his gear, and Earth. He has wrapped
the rope around metal rings so that the
rope rubs against the rings. This allows
most of the transferred energy to go to the
thermal energy of the rope and rings
rather than to his kinetic energy.

Tyler Stableford/The Image Bank/Getty Images

In an isolated system, we can relate the total energy at one instant to the total
energy at another instant without considering the energies at intermediate times.

This fact can be a very powerful tool in solving problems about isolated systems
when you need to relate energies of a system before and after a certain process
occurs in the system.

In Module 8-2, we discussed a special situation for isolated systems—namely,
the situation in which nonconservative forces (such as a kinetic frictional force)
do not act within them. In that special situation, �Eth and �Eint are both zero, and
so Eq. 8-37 reduces to Eq. 8-18. In other words, the mechanical energy of an
isolated system is conserved when nonconservative forces do not act in it.

External Forces and Internal Energy Transfers
An external force can change the kinetic energy or potential energy of an object
without doing work on the object—that is, without transferring energy to the
object. Instead, the force is responsible for transfers of energy from one type to
another inside the object.



Figure 8-15 shows an example. An initially stationary ice-skater pushes away
from a railing and then slides over the ice (Figs. 8-15a and b). Her kinetic energy
increases because of an external force on her from the rail. However, that force
does not transfer energy from the rail to her. Thus, the force does no work on
her. Rather, her kinetic energy increases as a result of internal transfers from the
biochemical energy in her muscles.

Figure 8-16 shows another example. An engine increases the speed of a car
with four-wheel drive (all four wheels are made to turn by the engine). During
the acceleration, the engine causes the tires to push backward on the road sur-
face. This push produces frictional forces that act on each tire in the forward
direction. The net external force from the road, which is the sum of these fric-
tional forces, accelerates the car, increasing its kinetic energy. However, does
not transfer energy from the road to the car and so does no work on the car.
Rather, the car’s kinetic energy increases as a result of internal transfers from the
energy stored in the fuel.

F
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F
:

f
:

F
:
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Figure 8-15 (a) As a skater pushes herself away from a railing, the force on her from
the railing is . (b) After the skater leaves the railing, she has velocity . (c) External
force acts on the skater, at angle f with a horizontal x axis. When the skater goes
through displacement , her velocity is changed from (� 0) to by the horizontal
component of .F
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Her push on the rail causes 
a transfer of internal energy 
to kinetic energy.

Figure 8-16 A vehicle accelerates to the
right using four-wheel drive. The road
exerts four frictional forces (two of them
shown) on the bottom surfaces of the tires.
Taken together, these four forces make up
the net external force acting on the car.F

:

acom

f f

In situations like these two, we can sometimes relate the external force on
an object to the change in the object’s mechanical energy if we can simplify the
situation. Consider the ice-skater example. During her push through distance d in
Fig. 8-15c, we can simplify by assuming that the acceleration is constant, her
speed changing from v0 � 0 to v. (That is, we assume has constant magnitude F
and angle f.) After the push, we can simplify the skater as being a particle and
neglect the fact that the exertions of her muscles have increased the thermal
energy in her muscles and changed other physiological features. Then we can
apply Eq. 7-5 to write

K � K0 � (F cos f)d,

or �K � Fd cos f. (8-38)

If the situation also involves a change in the elevation of an object, we can
include the change �U in gravitational potential energy by writing

�U � �K � Fd cos f. (8-39)

The force on the right side of this equation does no work on the object but is still
responsible for the changes in energy shown on the left side.

Power
Now that you have seen how energy can be transferred from one type to another,
we can expand the definition of power given in Module 7-6. There power is

(1
2 mv2 � 1

2 mv0
2 � Fxd)

F
:

F
:



defined as the rate at which work is done by a force. In a more general sense,
power P is the rate at which energy is transferred by a force from one type to
another. If an amount of energy �E is transferred in an amount of time �t, the
average power due to the force is

(8-40)

Similarly, the instantaneous power due to the force is

(8-41)P �
dE
dt

.

Pavg �
�E
�t

.
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on the glider to get it moving, a spring force does work on
it, transferring energy from the elastic potential energy of
the compressed spring to kinetic energy of the glider. The
spring force also pushes against a rigid wall. Because there
is friction between the glider and the ground-level track,
the sliding of the glider along that track section increases
their thermal energies.

System: Let’s take the system to contain all the interact-
ing bodies: glider, track, spring, Earth, and wall. Then, be-
cause all the force interactions are within the system, the
system is isolated and thus its total energy cannot change.
So, the equation we should use is not that of some external
force doing work on the system. Rather, it is a conservation
of energy.We write this in the form of Eq. 8-37:

Emec,2 � Emec,1 � �Eth. (8-42)

This is like a money equation: The final money is equal to
the initial money minus the amount stolen away by a thief.
Here, the final mechanical energy is equal to the initial me-
chanical energy minus the amount stolen away by friction.
None has magically appeared or disappeared.

Calculations: Now that we have an equation, let’s find
distance L. Let subscript 1 correspond to the initial state
of the glider (when it is still on the compressed spring)
and subscript 2 correspond to the final state of the glider
(when it has come to rest on the ground-level track). For
both states, the mechanical energy of the system is the
sum of any potential energy and any kinetic energy.

We have two types of potential energy: the elastic po-
tential energy (Ue � kx2) associated with the compressed1

2

Sample Problem 8.06 Lots of energies at an amusement park water slide

Figure 8-17 shows a water-slide ride in which a glider is shot
by a spring along a water-drenched (frictionless) track that
takes the glider from a horizontal section down to ground
level.As the glider then moves along ground-level track, it is
gradually brought to rest by friction. The total mass of the
glider and its rider is m � 200 kg, the initial compression of
the spring is d � 5.00 m, the spring constant is k � 3.20 �
103 N/m, the initial height is h � 35.0 m, and the coefficient
of kinetic friction along the ground-level track is mk � 0.800.
Through what distance L does the glider slide along the
ground-level track until it stops?

KEY IDEAS

Before we touch a calculator and start plugging numbers
into equations, we need to examine all the forces and then
determine what our system should be. Only then can we
decide what equation to write. Do we have an isolated sys-
tem (our equation would be for the conservation of en-
ergy) or a system on which an external force does work
(our equation would relate that work to the system’s
change in energy)?

Forces: The normal force on the glider from the track
does no work on the glider because the direction of this
force is always perpendicular to the direction of the
glider’s displacement. The gravitational force does work
on the glider, and because the force is conservative we can
associate a potential energy with it. As the spring pushes

spring and the gravitational potential energy (Ug � mgy) as-

L
mk

m� 0

k

h

Figure 8-17 A spring-loaded amusement park water slide.

sociated with the glider’s elevation. For the latter, let’s take
ground level as the reference level. That means that the
glider is initially at height y � h and finally at height y � 0.

In the initial state, with the glider stationary and ele-
vated and the spring compressed, the energy is

Emec,1 � K1 � Ue1 � Ug1

� 0 � kd2 � mgh. (8-43)1
2
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Substituting Eqs. 8-43 through 8-45 into Eq. 8-42, we find

0 � kd2 � mgh � mkmgL, (8-46)
and

L

� 69.3 m. (Answer)

Finally, note how algebraically simple our solution is. By
carefully defining a system and realizing that we have an
isolated system, we get to use the law of the conservation of
energy. That means we can relate the initial and final states
of the system with no consideration of the intermediate
states. In particular, we did not need to consider the glider as
it slides over the uneven track. If we had, instead, applied
Newton’s second law to the motion, we would have had to
know the details of the track and would have faced a far
more difficult calculation.

�
(3.20 � 103 N/m)(5.00 m)2

2(0.800)(200 kg)(9.8 m/s2)
�

35 m
0.800

�
kd2

2mkmg
�

h
mk

1
2

Conservative Forces A force is a conservative force if the net
work it does on a particle moving around any closed path, from an
initial point and then back to that point, is zero. Equivalently, a
force is conservative if the net work it does on a particle moving
between two points does not depend on the path taken by the par-
ticle. The gravitational force and the spring force are conservative
forces; the kinetic frictional force is a nonconservative force.

Potential Energy A potential energy is energy that is associated
with the configuration of a system in which a conservative force acts.
When the conservative force does work W on a particle within the sys-
tem, the change �U in the potential energy of the system is

�U � �W. (8-1)

If the particle moves from point xi to point xf , the change in the
potential energy of the system is

(8-6)

Gravitational Potential Energy The potential energy asso-
ciated with a system consisting of Earth and a nearby particle is
gravitational potential energy. If the particle moves from height yi

to height yf, the change in the gravitational potential energy of the
particle–Earth system is

�U � mg(yf � yi) � mg �y. (8-7)

If the reference point of the particle is set as yi � 0 and the cor-
responding gravitational potential energy of the system is set as
Ui � 0, then the gravitational potential energy U when the parti-

�U � ��xf

xi

F(x) dx.

Review & Summary

cle is at any height y is

U(y) � mgy. (8-9)

Elastic Potential Energy Elastic potential energy is the
energy associated with the state of compression or extension of an
elastic object. For a spring that exerts a spring force F � �kx when
its free end has displacement x, the elastic potential energy is

(8-11)

The reference configuration has the spring at its relaxed length, at
which x � 0 and U � 0.

Mechanical Energy The mechanical energy Emec of a system
is the sum of its kinetic energy K and potential energy U:

Emec � K � U. (8-12)

An isolated system is one in which no external force causes energy
changes. If only conservative forces do work within an isolated sys-
tem, then the mechanical energy Emec of the system cannot change.
This principle of conservation of mechanical energy is written as

K2 � U2 � K1 � U1, (8-17)

in which the subscripts refer to different instants during an
energy transfer process. This conservation principle can also be
written as

�Emec � �K � �U � 0. (8-18)

Potential Energy Curves If we know the potential energy
function U(x) for a system in which a one-dimensional force F(x)

U(x) � 1
2kx2.

In the final state, with the spring now in its relaxed state and
the glider again stationary but no longer elevated, the final
mechanical energy of the system is

Emec,2 � K2 � Ue2 � Ug2

� 0 � 0 � 0. (8-44)

Let’s next go after the change �Eth of the thermal energy of
the glider and ground-level track. From Eq. 8-31, we can
substitute for �Eth with fkL (the product of the frictional
force magnitude and the distance of rubbing). From Eq. 6-2,
we know that fk � mkFN, where FN is the normal force.
Because the glider moves horizontally through the region
with friction, the magnitude of FN is equal to mg (the up-
ward force matches the downward force). So, the friction’s
theft from the mechanical energy amounts to

�Eth � mkmgL. (8-45)

(By the way, without further experiments, we cannot say
how much of this thermal energy ends up in the glider and
how much in the track. We simply know the total amount.)
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acts on a particle, we can find the force as

(8-22)

If U(x) is given on a graph, then at any value of x, the force F(x) is
the negative of the slope of the curve there and the kinetic energy
of the particle is given by

K(x) � Emec � U(x), (8-24)

where Emec is the mechanical energy of the system. A turning point
is a point x at which the particle reverses its motion (there, K � 0).
The particle is in equilibrium at points where the slope of the U(x)
curve is zero (there, F(x) � 0).

Work Done on a System by an External Force Work W
is energy transferred to or from a system by means of an external
force acting on the system. When more than one force acts on a
system, their net work is the transferred energy. When friction is
not involved, the work done on the system and the change �Emec in
the mechanical energy of the system are equal:

W � �Emec � �K � �U. (8-26, 8-25)

When a kinetic frictional force acts within the system, then the ther-
mal energy Eth of the system changes. (This energy is associated with
the random motion of atoms and molecules in the system.) The
work done on the system is then

W � �Emec � �Eth. (8-33)

F(x) � �
dU(x)

dx
.

The change �Eth is related to the magnitude fk of the frictional force
and the magnitude d of the displacement caused by the external
force by

�Eth � fkd. (8-31)

Conservation of Energy The total energy E of a system
(the sum of its mechanical energy and its internal energies,
including thermal energy) can change only by amounts of energy
that are transferred to or from the system. This experimental fact
is known as the law of conservation of energy. If work W is done
on the system, then

W � �E � �Emec � �Eth � �Eint. (8-35)

If the system is isolated (W � 0), this gives

�Emec � �Eth � �Eint � 0 (8-36)

and Emec,2 � Emec,1 � �Eth � �Eint, (8-37)

where the subscripts 1 and 2 refer to two different instants.

Power The power due to a force is the rate at which that force
transfers energy. If an amount of energy �E is transferred by
a force in an amount of time �t, the average power of the force is

(8-40)

The instantaneous power due to a force is

(8-41)P �
dE
dt

.

Pavg �
�E
�t

.

1 In Fig. 8-18, a horizontally moving block can take three fric-
tionless routes, differing only in elevation, to reach the dashed 
finish line. Rank the routes according to (a) the speed of the block
at the finish line and (b) the travel time of the block to the finish
line, greatest first.

tude of the force on the particle, greatest first. What value must
the mechanical energy Emec of the particle not exceed if the par-
ticle is to be (b) trapped in the potential well at the left, (c)
trapped in the potential well at the right, and (d) able to move
between the two potential wells but not to the right of point H?
For the situation of (d), in which of regions BC, DE, and FG will
the particle have (e) the greatest kinetic energy and (f ) the least
speed?

3 Figure 8-20 shows one direct
path and four indirect paths from
point i to point f. Along the direct
path and three of the indirect paths,
only a conservative force Fc acts on
a certain object. Along the fourth
indirect path, both Fc and a noncon-
servative force Fnc act on the object.
The change �Emec in the object’s
mechanical energy (in joules) in going from i to f is indicated along
each straight-line segment of the indirect paths. What is �Emec (a)
from i to f along the direct path and (b) due to Fnc along the one
path where it acts?

4 In Fig. 8-21, a small, initially stationary block is released on a
frictionless ramp at a height of 3.0 m. Hill heights along the ramp
are as shown in the figure.The hills have identical circular tops, and
the block does not fly off any hill. (a) Which hill is the first the
block cannot cross? (b) What does the block do after failing
to cross that hill? Of the hills that the block can cross, on which hill-

Questions

(1)

Finish line 

(2)

(3)

v

Figure 8-18 Question 1.
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Figure 8-19 Question 2.
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Figure 8-20 Question 3.
2 Figure 8-19 gives the potential energy function of a particle.
(a) Rank regions AB, BC, CD, and DE according to the magni-



descends, it pulls on a block via a
second rope, and the block slides
over a lab table. Again consider the
cylinder–rod–Earth system, similar
to that shown in Fig. 8-23b. Your
work on the system is 200 J. The sys-
tem does work of 60 J on the block.
Within the system, the kinetic
energy increases by 130 J and
the gravitational potential energy
decreases by 20 J. (a) Draw an “en-
ergy statement” for the system, as in
Fig. 8-23c. (b) What is the change in
the thermal energy within the system?

8 In Fig. 8-25, a block slides along a track that descends through
distance h. The track is frictionless except for the lower section.
There the block slides to a stop in a certain distance D because of
friction. (a) If we decrease h, will the block now slide to a stop in a
distance that is greater than, less than, or equal to D? (b) If, instead,
we increase the mass of the block, will the stopping distance now be
greater than, less than, or equal to D?
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top is (c) the centripetal acceleration of the block greatest and (d) the
normal force on the block least?

(1) (3)(2)

Figure 8-26 Question 9.

h D

Figure 8-25 Question 8.

Figure 8-21 Question 4.

System's energies: 

ΔK = +50 J

ΔUg = +20 J

ΔEth = ? 

W = +100 J

(b)(a) (c)

Cylinder

Earth

Rope
Rod

System

Work W

A

B

C D 

Figure 8-22 Question 5.

Figure 8-23 Question 6.

(1)

0.5 m 

1.5 m 

3.0 m 

2.5 m 

3.5 m 

(2)

(3)

(4)

Cylinder

Rod

Block

Rope

Figure 8-24 Question 7.

5 In Fig. 8-22, a block slides from A to C along a frictionless ramp,
and then it passes through horizontal region CD, where a frictional
force acts on it. Is the block’s kinetic energy increasing, decreasing,
or constant in (a) region AB, (b) region BC, and (c) region CD?
(d) Is the block’s mechanical energy increasing, decreasing, or 
constant in those regions?

6 In Fig. 8-23a, you pull upward on a rope that is attached to a
cylinder on a vertical rod. Because the cylinder fits tightly on the
rod, the cylinder slides along the rod with considerable friction.
Your force does work W � �100 J on the cylinder–rod–Earth
system (Fig. 8-23b).An “energy statement” for the system is shown
in Fig. 8-23c: the kinetic energy K increases by 50 J, and the gravita-
tional potential energy Ug increases by 20 J. The only other change
in energy within the system is for the thermal energy Eth. What is
the change �Eth?

10 Figure 8-27 shows three plums
that are launched from the same level
with the same speed. One moves
straight upward, one is launched at a
small angle to the vertical, and one is
launched along a frictionless incline.
Rank the plums according to their
speed when they reach the level of
the dashed line, greatest first.

11 When a particle moves from f
to i and from j to i along the paths
shown in Fig. 8-28, and in the indi-
cated directions, a conservative
force does the indicated amounts
of work on it. How much work is
done on the particle by when the
particle moves directly from f to j?

F
:

F
:

(1) (2) (3)

Figure 8-27 Question 10.

f

i

j

20 J

�20 J

Figure 8-28 Question 11.

7 The arrangement shown in Fig. 8-24 is similar to that in
Question 6. Here you pull downward on the rope that is attached
to the cylinder, which fits tightly on the rod. Also, as the cylinder

9 Figure 8-26 shows three situations involving a plane that is not
frictionless and a block sliding along the plane.The block begins with
the same speed in all three situations and slides until the kinetic fric-
tional force has stopped it. Rank the situations according to the in-
crease in thermal energy due to the sliding, greatest first.



•3 You drop a 2.00 kg book to a friend
who stands on the ground at distance
D � 10.0 m below. If your friend’s out-
stretched hands are at distance d � 1.50 m
above the ground (Fig. 8-30), (a) how
much work Wg does the gravitational
force do on the book as it drops to her
hands? (b) What is the change �U in the
gravitational potential energy of the
book–Earth system during the drop? If
the gravitational potential energy U of
that system is taken to be zero at ground
level, what is U (c) when the book is re-
leased and (d) when it reaches her
hands? Now take U to be 100 J at
ground level and again find (e) Wg,
(f) �U, (g) U at the release point, and
(h) U at her hands.

•4 Figure 8-31 shows a ball with mass 
m � 0.341 kg attached to the end of a thin rod
with length L � 0.452 m and negligible mass.
The other end of the rod is pivoted so that the
ball can move in a vertical circle. The rod is
held horizontally as shown and then given
enough of a downward push to cause the
ball to swing down and around and just reach
the vertically up position, with zero speed
there. How much work is done on the ball by
the gravitational force from the initial point
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Module 8-1 Potential Energy
•1 What is the spring constant of a spring that stores 25 J of
elastic potential energy when compressed by 7.5 cm?

•2 In Fig. 8-29, a single frictionless roller-coaster car of mass
m � 825 kg tops the first hill with speed v0 � 17.0 m/s at height 
h � 42.0 m. How much work does the gravitational force do on the
car from that point to (a) point A, (b) point B, and (c) point C? If the
gravitational potential energy of the car–Earth system is taken to be
zero at C, what is its value when the car is at (d) B and (e) A? (f) If
mass m were doubled, would the change in the gravitational potential
energy of the system between points A and B increase, decrease, or
remain the same?

SSM

to (a) the lowest point, (b) the highest point, and (c) the point on
the right level with the initial point? If the gravitational potential
energy of the ball–Earth system is taken to be zero at the initial
point, what is it when the ball reaches (d) the lowest point, (e) the
highest point, and (f) the point on the right level with the initial
point? (g) Suppose the rod were pushed harder so that the ball
passed through the highest point with a nonzero speed.Would �Ug

from the lowest point to the highest point then be greater than, less
than, or the same as it was when the ball stopped at the highest
point?

•5 In Fig. 8-32, a 2.00 g ice
flake is released from the edge of a
hemispherical bowl whose radius r
is 22.0 cm. The flake–bowl contact
is frictionless. (a) How much work is
done on the flake by the gravita-
tional force during the flake’s
descent to the bottom of the bowl?
(b) What is the change in the poten-
tial energy of the flake–Earth sys-
tem during that descent? (c) If that
potential energy is taken to be zero
at the bottom of the bowl, what is its
value when the flake is released? (d) If, instead, the potential en-
ergy is taken to be zero at the release point, what is its value when
the flake reaches the bottom of the bowl? (e) If the mass of the
flake were doubled, would the magnitudes of the answers to (a)
through (d) increase, decrease, or remain the same?

••6 In Fig. 8-33, a small block of
mass m � 0.032 kg can slide along
the frictionless loop-the-loop, with
loop radius R � 12 cm. The block is
released from rest at point P, at
height h � 5.0R above the bottom
of the loop. How much work does
the gravitational force do on the
block as the block travels from point
P to (a) point Q and (b) the top of
the loop? If the gravitational poten-
tial energy of the block–Earth sys-
tem is taken to be zero at the bot-
tom of the loop, what is that potential energy when the block is (c)
at point P, (d) at point Q, and (e) at the top of the loop? (f) If, in-
stead of merely being released, the block is given some initial
speed downward along the track, do the answers to (a) through (e)
increase, decrease, or remain the same?

••7 Figure 8-34 shows a thin rod, of length L � 2.00 m and neg-
ligible mass, that can pivot about one end to rotate in a vertical
circle. A ball of mass m � 5.00 kg is attached to the other end.
The rod is pulled aside to angle u0 � 30.0� and released with 
initial velocity . As the ball descends to its lowest point,
(a) how much work does the gravitational force do on it and
(b) what is the change in the gravitational potential energy of

v:0 � 0

SSM

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday
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Figure 8-32 Problems 5 
and 11.

Figure 8-29 Problems 2 and 9.

Figure 8-31
Problems 4 
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Problems 3 and 10.
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Figure 8-33 Problems 6 
and 17.
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www.flyingcircusofphysics.com


••16 A 700 g block is released from rest at height h0 above a ver-
tical spring with spring constant k � 400 N/m and negligible mass.
The block sticks to the spring and momentarily stops after com-
pressing the spring 19.0 cm. How much work is done (a) by the
block on the spring and (b) by the spring on the block? (c) What is
the value of h0? (d) If the block were released from height 2.00h0

above the spring, what would be the maximum compression of the
spring?

••17 In Problem 6, what are the magnitudes of (a) the horizontal
component and (b) the vertical component of the net force acting
on the block at point Q? (c) At what height h should the block be
released from rest so that it is on the verge of losing contact with
the track at the top of the loop? (On the verge of losing contact
means that the normal force on the block from the track has just
then become zero.) (d) Graph the magnitude of the normal force on
the block at the top of the loop versus initial height h, for the range
h � 0 to h � 6R.

••18 (a) In Problem 7, what is the speed of the ball at the lowest
point? (b) Does the speed increase, decrease, or remain the same if
the mass is increased?

••19 Figure 8-36 shows an 8.00 kg stone
at rest on a spring. The spring is compressed
10.0 cm by the stone. (a) What is the spring
constant? (b) The stone is pushed down an
additional 30.0 cm and released. What is the
elastic potential energy of the compressed
spring just before that release? (c) What is
the change in the gravitational potential en-
ergy of the stone–Earth system when the
stone moves from the release point to its maximum height? (d) What
is that maximum height, measured from the release point?

••20 A pendulum consists of a 2.0 kg stone swinging on a
4.0 m string of negligible mass. The stone has a speed of 8.0 m/s
when it passes its lowest point. (a) What is the speed when the
string is at 60� to the vertical? (b) What is the greatest angle with
the vertical that the string will reach during the stone’s motion?
(c) If the potential energy of the pendulum–Earth system is taken
to be zero at the stone’s lowest point, what is the total mechanical
energy of the system?

••21 Figure 8-34 shows a pendulum of length L � 1.25 m. Its bob
(which effectively has all the mass) has speed v0 when the cord makes
an angle u0 � 40.0� with the vertical. (a) What is the speed of the bob
when it is in its lowest position if v0 � 8.00 m/s? What is the least
value that v0 can have if the pendulum is to swing down and then up
(b) to a horizontal position, and (c) to a vertical position with the
cord remaining straight? (d) Do the answers to (b) and (c) increase,
decrease, or remain the same if u0 is increased by a few degrees?
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the ball – Earth system? (c) If the gravita-
tional potential energy is taken to be zero
at the lowest point, what is its value just as
the ball is released? (d) Do the magnitudes
of the answers to (a) through (c) increase,
decrease, or remain the same if angle u0 is
increased?

••8 A 1.50 kg snowball is fired from a cliff
12.5 m high. The snowball’s initial velocity is
14.0 m/s, directed 41.0� above the horizontal.
(a) How much work is done on the snowball
by the gravitational force during its flight to
the flat ground below the cliff? (b) What is
the change in the gravitational potential en-
ergy of the snowball–Earth system during
the flight? (c) If that gravitational potential
energy is taken to be zero at the height of the cliff, what is its value
when the snowball reaches the ground?

Module 8-2 Conservation of Mechanical Energy
•9 In Problem 2, what is the speed of the car at (a) point A,
(b) point B, and (c) point C? (d) How high will the car go on the
last hill, which is too high for it to cross? (e) If we substitute a sec-
ond car with twice the mass, what then are the answers to (a)
through (d)?

•10 (a) In Problem 3, what is the speed of the book when it
reaches the hands? (b) If we substituted a second book with twice
the mass, what would its speed be? (c) If, instead, the book were
thrown down, would the answer to (a) increase, decrease, or 
remain the same?

•11 (a) In Problem 5, what is the speed of the flake
when it reaches the bottom of the bowl? (b) If we substituted a sec-
ond flake with twice the mass, what would its speed be? (c) If,
instead, we gave the flake an initial downward speed along the
bowl, would the answer to (a) increase, decrease, or remain the
same?

•12 (a) In Problem 8, using energy techniques rather than the
techniques of Chapter 4, find the speed of the snowball as it
reaches the ground below the cliff. What is that speed (b) if the
launch angle is changed to 41.0� below the horizontal and (c) if the
mass is changed to 2.50 kg?

•13 A 5.0 g marble is fired vertically upward using a spring
gun. The spring must be compressed 8.0 cm if the marble is to just
reach a target 20 m above the marble’s position on the compressed
spring. (a) What is the change �Ug in the gravitational potential en-
ergy of the marble–Earth system during the 20 m ascent?
(b) What is the change �Us in the elastic potential energy of the
spring during its launch of the marble? (c) What is the spring con-
stant of the spring?

•14 (a) In Problem 4, what initial speed must be given the ball so
that it reaches the vertically upward position with zero speed? What
then is its speed at (b) the lowest point and (c) the point on the right
at which the ball is level with the initial point? (d) If the ball’s mass
were doubled, would the answers to (a) through (c) increase, de-
crease, or remain the same?

•15 In Fig. 8-35, a runaway truck with failed brakes is mov-
ing downgrade at 130 km/h just before the driver steers the truck
up a frictionless emergency escape ramp with an inclination of 
u � 15�.The truck’s mass is 1.2 � 104 kg. (a) What minimum length

SSM
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L must the ramp have if the truck is to stop (momentarily) along
it? (Assume the truck is a particle, and justify that assumption.)
Does the minimum length L increase, decrease, or remain the same
if (b) the truck’s mass is decreased and (c) its speed is decreased?

L

θ 0

v0

m

Figure 8-34
Problems 7, 18,

and 21.

L

θ 

Figure 8-35 Problem 15.

k

Figure 8-36
Problem 19.



�U of the ball–Earth system between t 0 and
t 6.0 s (still free fall)?

••26 A conservative force ,
where x is in meters, acts on a particle moving
along an x axis. The potential energy U associated
with this force is assigned a value of 27 J at x � 0.
(a) Write an expression for U as a function of x,
with U in joules and x in meters. (b)
What is the maximum positive poten-
tial energy? At what (c) negative
value and (d) positive value of x is the
potential energy equal to zero?

••27 Tarzan, who weighs 688 N,
swings from a cliff at the end of a vine
18 m long (Fig. 8-40). From the top of
the cliff to the bottom of the swing, he
descends by 3.2 m.The vine will break
if the force on it exceeds 950 N.
(a) Does the vine break? (b) If no,
what is the greatest force on it during
the swing? If yes, at what angle with
the vertical does it break?

F
:

� (6.0x � 12)î  N

�
�

is L � 120 cm long, has a ball
attached to one end, and is
fixed at its other end. The dis-
tance d from the fixed end to a
fixed peg at point P is 75.0 cm.
When the initially stationary
ball is released with the string
horizontal as shown, it will
swing along the dashed arc.
What is its speed when it
reaches (a) its lowest point

••31 A block with mass m 2.00 kg is placed against a spring�

and (b) its highest point after
the string catches on the peg?

••24 A block of mass m � 2.0 kg is dropped
from height h � 40 cm onto a spring of spring
constant k � 1960 N/m (Fig. 8-39). Find the max-
imum distance the spring is compressed.

••25 At t � 0 a 1.0 kg ball is thrown from a tall
tower with . What isv: � (18 m/s)î � (24 m/s)ĵ

••23 The string in Fig. 8-38ILW
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••22 A 60 kg skier starts from rest at height H � 20 m above
the end of a ski-jump ramp (Fig. 8-37) and leaves the ramp at angle
u � 28�. Neglect the effects of air resistance and assume the ramp
is frictionless. (a) What is the maximum height h of his jump above
the end of the ramp? (b) If he increased his weight by putting on a
backpack, would h then be greater, less, or the same?

r
P

L

d

Figure 8-38 Problems 23 and 70.

H

h
θ 

End of 
ramp

Figure 8-37 Problem 22.

h

k

m

Figure 8-39
Problem 24.

Figure 8-40 Problem 27.

θ 

Figure 8-43 Problem 30.

••28 Figure 8-41a applies to the spring
in a cork gun (Fig. 8-41b); it shows the
spring force as a function of the stretch or
compression of the spring. The spring is
compressed by 5.5 cm and used to propel
a 3.8 g cork from the gun. (a) What is the
speed of the cork if it is released as the
spring passes through its relaxed posi-
tion? (b) Suppose, instead, that the cork
sticks to the spring and stretches it 1.5 cm
before separation occurs.What now is the
speed of the cork at the time of release?

of mass m � 12 kg is released from rest
on a frictionless incline of angle 30�.
Below the block is a spring that can be
compressed 2.0 cm by a force of 270 N.
The block momentarily stops when
it compresses the spring by 5.5 cm.
(a) How far does the block move
down the incline from its rest posi-
tion to this stopping point? (b) What
is the speed of the block just as it
touches the spring?

••30 A 2.0 kg breadbox on a fric-
tionless incline of angle u � 40� is
connected, by a cord that runs over a
pulley, to a light spring of spring con-
stant k � 120 N/m, as shown in

� �

θ 

m

Figure 8-42 Problems 29 
and 35.

••29 In Fig. 8-42, a blockWWWSSM
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Figure 8-41 Problem 28.

Fig. 8-43. The box is released from rest when the spring is
unstretched. Assume that the pulley is massless and frictionless. (a)
What is the speed of the box when it has moved 10 cm down the in-
cline? (b) How far down the incline from its point of release does
the box slide before momentarily stopping, and what are the (c)
magnitude and (d) direction (up or down the incline) of the box’s
acceleration at the instant the box momentarily stops?

ILW

on a frictionless incline with angle 30.0� (Fig. 8-44). (The block is
not attached to the spring.) The spring, with spring constant k 19.6
N/cm, is compressed 20.0 cm and then released. (a) What is the elastic
potential energy of the compressed
spring? (b) What is the change in the
gravitational potential energy of the
block–Earth system as the block
moves from the release point to its
highest point on the incline? (c)
How far along the incline is the
highest point from the release
point?

�
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Figure 8-44 Problem 31.



a distance d down a frictionless incline at angle u � 30.0� where it
runs into a spring of spring constant 431 N/m. When the block mo-
mentarily stops, it has compressed the spring by 21.0 cm. What are
(a) distance d and (b) the distance between the point of the first
block–spring contact and the point where the block’s speed is
greatest?

•••36 Two children are
playing a game in which
they try to hit a small box
on the floor with a marble
fired from a spring-loaded
gun that is mounted on a
table. The target box is hori-
zontal distance D � 2.20 m
from the edge of the table;
see Fig. 8-48. Bobby compresses the spring 1.10 cm, but the center
of the marble falls 27.0 cm short of the center of the box. How far
should Rhoda compress the spring to score a direct hit? Assume
that neither the spring nor the ball encounters friction in the gun.

•••37 A uniform cord of length 25 cm and mass 15 g is initially
stuck to a ceiling. Later, it hangs vertically from the ceiling with only
one end still stuck. What is the change in the gravitational potential
energy of the cord with this change in orientation? (Hint: Consider a
differential slice of the cord and then use integral calculus.)

Module 8-3 Reading a Potential Energy Curve
••38 Figure 8-49 shows a plot of potential energy U versus posi-
tion x of a 0.200 kg particle that can travel only along an x axis
under the influence of a conservative force. The graph has these

••39 Figure 8-50 shows a
plot of potential energy U ver-
sus position x of a 0.90 kg parti-
cle that can travel only along an
x axis. (Nonconservative forces
are not involved.) Three values
are
and The particle is
released at x 4.5 m with an
initial speed of 7.0 m/s, headed
in the negative x direction.
(a) If the particle can reach x � 1.0 m, what is its speed there, and if
it cannot, what is its turning point? What are the (b) magnitude
and (c) direction of the force on the particle as it begins to move to
the left of x � 4.0 m? Suppose, instead, the particle is headed in the
positive x direction when it is released at x � 4.5 m at speed 7.0 m/s.
(d) If the particle can reach x � 7.0 m, what is its speed there, and if
it cannot, what is its turning point? What are the (e) magnitude and
(f) direction of the force on the particle as it begins to move to the
right of x � 5.0 m?

••40 The potential energy of a diatomic molecule (a two-atom
system like H2 or O2) is given by

where r is the separation of the two atoms of the molecule and A
and B are positive constants. This potential energy is associated
with the force that binds the two atoms together. (a) Find the equilib-
rium separation—that is, the distance between the atoms at which the
force on each atom is zero. Is the force repulsive (the atoms are
pushed apart) or attractive (they are pulled together) if their separa-
tion is (b) smaller and (c) larger than the equilibrium separation?

•••41 A single conservative force F(x) acts on a 1.0 kg particle
that moves along an x axis. The potential energy U(x) associated
with F(x) is given by

U(x) � �4x e�x/4 J,

where x is in meters. At x � 5.0 m the particle has a kinetic energy
of 2.0 J. (a) What is the mechanical energy of the system? (b) Make

U �
A
r12 �

B
r 6 ,

�
UC � 45.0 J.

UB � 35.0 J,UA � 15.0 J,

k � 170 N/m is at the top of a fric-
tionless incline of angle 37.0�.
The lower end of the incline is dis-
tance D 1.00 m from the end of
the spring, which is at its relaxed
length. A 2.00 kg canister is pushed
against the spring until the spring is
compressed 0.200 m and released
from rest. (a) What is the speed of
the canister at the instant the spring
returns to its relaxed length (which is when the canister loses contact
with the spring)? (b) What is the speed of the canister when it
reaches the lower end of the incline?

•••34 A boy is initially seated
on the top of a hemispherical ice
mound of radius R 13.8 m. He
begins to slide down the ice, with a
negligible initial speed (Fig. 8-47).
Approximate the ice as being fric-
tionless. At what height does the
boy lose contact with the ice?

•••35 In Fig. 8-42, a block of mass m � 3.20 kg slides from rest

�

�

� �

••32 In Fig. 8-45, a chain is held
on a frictionless table with one-
fourth of its length hanging over
the edge. If the chain has length
L � 28 cm and mass m � 0.012 kg,
how much work is required to pull
the hanging part back onto the
table?

•••33 In Fig. 8-46, a spring with
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values: , and . The particle is
released at the point where U forms a “potential hill” of “height”

, with kinetic energy 4.00 J. What is the speed of the
particle at (a) m and (b) m? What is the position
of the turning point on (c) the right side and (d) the left side?

x � 6.5x � 3.5
UB � 12.00 J

UD � 24.00 JUA � 9.00 J, UC � 20.00 J

D

θ 

Figure 8-46 Problem 33.

D

Figure 8-48 Problem 36.

R

Figure 8-47 Problem 34.

Figure 8-45 Problem 32.
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Figure 8-50 Problem 39.
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Figure 8-49 Problem 38.



•50 A 60 kg skier leaves the end of a ski-jump ramp with a ve-
locity of 24 m/s directed 25� above the horizontal. Suppose that as a
result of air drag the skier returns to the ground with a speed of 22
m/s, landing 14 m vertically below the end of the ramp. From the
launch to the return to the ground, by how much is the mechanical
energy of the skier–Earth system reduced because of air drag?

•51 During a rockslide, a 520 kg rock slides from rest down a hill-
side that is 500 m long and 300 m high. The coefficient of kinetic
friction between the rock and the hill surface is 0.25. (a) If the grav-
itational potential energy U of the rock–Earth system is zero at
the bottom of the hill, what is the value of U just before the slide?
(b) How much energy is transferred to thermal energy during the
slide? (c) What is the kinetic energy of the rock as it reaches the
bottom of the hill? (d) What is its speed then?

••52 A large fake cookie sliding on a horizontal surface is 
attached to one end of a horizontal spring with spring constant 
k � 400 N/m; the other end of the spring is fixed in place. The
cookie has a kinetic energy of 20.0 J as it passes through
the spring’s equilibrium position. As the cookie slides, a frictional
force of magnitude 10.0 N acts on it. (a) How far will the cookie
slide from the equilibrium position before coming momentarily to
rest? (b) What will be the kinetic energy of the cookie as it slides
back through the equilibrium position?

••53 In Fig. 8-52, a 3.5 kg
block is accelerated from rest
by a compressed spring of
spring constant 640 N/m. The
block leaves the spring at the
spring’s relaxed length and
then travels over a horizontal
floor with a coefficient of ki-
netic friction mk � 0.25. The frictional force stops the block in dis-
tance D � 7.8 m. What are (a) the increase in the thermal energy
of the block–floor system, (b) the maximum kinetic energy of the
block, and (c) the original compression distance of the spring?

••54 A child whose weight is 267 N slides down a 6.1 m play-
ground slide that makes an angle of 20� with the horizontal.The co-
efficient of kinetic friction between slide and child is 0.10. (a) How
much energy is transferred to thermal energy? (b) If she starts at
the top with a speed of 0.457 m/s, what is her speed at the bottom?

••55 In Fig. 8-53, a block of mass m � 2.5 kg slides head on
into a spring of spring constant
k 320 N/m. When the block�

ILW

stops, it has compressed the
spring by 7.5 cm. The coefficient
of kinetic friction between block
and floor is 0.25. While the block
is in contact with the spring and
being brought to rest, what are (a)
the work done by the spring force and (b) the increase in thermal
energy of the block–floor system? (c) What is the block’s speed
just as it reaches the spring?

••56 You push a 2.0 kg block against a horizontal spring, com-
pressing the spring by 15 cm. Then you release the block, and the
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a plot of U(x) as a function of x for 0 	 x 	 10 m, and on the same
graph draw the line that represents the mechanical energy of the
system. Use part (b) to determine (c) the least value of x the parti-
cle can reach and (d) the greatest value of x the particle can reach.
Use part (b) to determine (e) the maximum kinetic energy of the
particle and (f) the value of x at which it occurs. (g) Determine an
expression in newtons and meters for F(x) as a function of x. (h)
For what (finite) value of x does F(x) � 0?

Module 8-4 Work Done on a System by an External Force
•42 A worker pushed a 27 kg block 9.2 m along a level floor at con-
stant speed with a force directed 32� below the horizontal. If the coef-
ficient of kinetic friction between block and floor was 0.20, what were
(a) the work done by the worker’s force and (b) the increase in ther-
mal energy of the block–floor system?

•43 A collie drags its bed box across a floor by applying a hori-
zontal force of 8.0 N. The kinetic frictional force acting on the box
has magnitude 5.0 N. As the box is dragged through 0.70 m along
the way, what are (a) the work done by the collie’s applied force
and (b) the increase in thermal energy of the bed and floor?

••44 A horizontal force of magnitude 35.0 N pushes a block of
mass 4.00 kg across a floor where the coefficient of kinetic friction is
0.600. (a) How much work is done by that applied force on the
block–floor system when the block slides through a displacement of
3.00 m across the floor? (b) During that displacement, the thermal
energy of the block increases by 40.0 J. What is the increase in ther-
mal energy of the floor? (c) What is the increase in the kinetic energy
of the block?

••45 A rope is used to pull a 3.57 kg block at constant speed
4.06 m along a horizontal floor. The force on the block from the
rope is 7.68 N and directed 15.0� above the horizontal.What are (a)
the work done by the rope’s force, (b) the increase in thermal en-
ergy of the block–floor system, and (c) the coefficient of kinetic
friction between the block and floor?

Module 8-5 Conservation of Energy
•46 An outfielder throws a baseball with an initial speed of
81.8 mi/h. Just before an infielder catches the ball at the same
level, the ball’s speed is 110 ft/s. In foot-pounds, by how much is the
mechanical energy of the ball–Earth system reduced because of
air drag? (The weight of a baseball is 9.0 oz.)

•47 A 75 g Frisbee is thrown from a point 1.1 m above the
ground with a speed of 12 m/s. When it has reached a height of
2.1 m, its speed is 10.5 m/s. What was the reduction in Emec of the
Frisbee–Earth system because of air drag?

•48 In Fig. 8-51, a block slides
down an incline. As it moves from
point A to point B, which are 5.0 m
apart, force acts on the block, with
magnitude 2.0 N and directed down
the incline.The magnitude of the fric-
tional force acting on the block is
10 N. If the kinetic energy of the
block increases by 35 J between A and B, how much work is done on
the block by the gravitational force as the block moves from A to B?

•49 A 25 kg bear slides, from rest, 12 m down a
lodgepole pine tree, moving with a speed of 5.6 m/s just before
hitting the ground. (a) What change occurs in the gravitational
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potential energy of the bear – Earth system during the slide?
(b) What is the kinetic energy of the bear just before hitting the
ground? (c) What is the average frictional force that acts on the
sliding bear?

x
0

Figure 8-53 Problem 55.

No friction D
( k)μ 

Figure 8-52 Problem 53.

A

B

Figure 8-51 Problems 48 
and 71.



•••65 A particle can slide along a
track with elevated ends and a flat
central part, as shown in Fig. 8-58.
The flat part has length L � 40 cm.
The curved portions of the track are
frictionless, but for the flat part the
coefficient of kinetic friction is mk �
0.20.The particle is released from rest at point A, which is at height
h � L/2. How far from the left edge of the flat part does the particle
finally stop?

Additional Problems
66 A 3.2 kg sloth hangs 3.0 m above the ground. (a) What is the
gravitational potential energy of the sloth–Earth system if we take
the reference point y 0 to be at the ground? If the sloth drops
to the ground and air drag on it is assumed to be negligible, what
are the (b) kinetic energy and (c) speed of the sloth just before it
reaches the ground?

�
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spring sends it sliding across a tabletop. It stops 75 cm from where
you released it. The spring constant is 200 N/m. What is the
block–table coefficient of kinetic friction?

••57 In Fig. 8-54, a block slides along a track from one level to a
higher level after passing through an intermediate valley. The track
is frictionless until the block reaches the higher level. There a fric-
tional force stops the block in a distance d. The block’s initial speed
v0 is 6.0 m/s, the height difference h is 1.1 m, and mk is 0.60. Find d.

•••63 The cable of the 1800 kg elevator
cab in Fig. 8-56 snaps when the cab is at
rest at the first floor, where the cab bottom
is a distance d � 3.7 m above a spring of
spring constant k � 0.15 MN/m. A safety
device clamps the cab against guide rails so
that a constant frictional force of 4.4 kN
opposes the cab’s motion. (a) Find the
speed of the cab just before it hits the
spring. (b) Find the maximum distance x
that the spring is compressed (the fric-
tional force still acts during this compres-
sion). (c) Find the distance that the cab
will bounce back up the shaft. (d) Using
conservation of energy, find the approxi-
mate total distance that the cab will move before coming to rest.
(Assume that the frictional force on the cab is negligible when the
cab is stationary.)

•••64 In Fig. 8-57, a block is released from rest at height d � 40
cm and slides down a frictionless ramp and onto a first plateau,
which has length d and where the coefficient of kinetic friction is
0.50. If the block is still moving, it then slides down a second fric-
tionless ramp through height d/2 and onto a lower plateau, which
has length d/2 and where the coefficient of kinetic friction is
again 0.50. If the block is still moving, it then slides up a friction-
less ramp until it (momentarily) stops. Where does the block
stop? If its final stop is on a plateau, state which one and give the
distance L from the left edge of that plateau. If the block reaches
the ramp, give the height H above the lower plateau where it
momentarily stops.

h μ k
μ = 0 v0

d

Figure 8-54 Problem 57.

••58 A cookie jar is moving up a 40� incline. At a point 55 cm
from the bottom of the incline (measured along the incline), the jar
has a speed of 1.4 m/s. The coefficient of kinetic friction between
jar and incline is 0.15. (a) How much farther up the incline will the
jar move? (b) How fast will it be going when it has slid back to the
bottom of the incline? (c) Do the answers to (a) and (b) increase,
decrease, or remain the same if we decrease the coefficient of ki-
netic friction (but do not change the given speed or location)?

••59 A stone with a weight of 5.29 N is launched vertically from
ground level with an initial speed of 20.0 m/s, and the air drag on it
is 0.265 N throughout the flight. What are (a) the maximum height
reached by the stone and (b) its speed just before it hits the ground?

••60 A 4.0 kg bundle starts up a 30� incline with 128 J of kinetic
energy. How far will it slide up the incline if the coefficient of ki-
netic friction between bundle and incline is 0.30?

••61 When a click beetle is upside down on its back, it jumps
upward by suddenly arching its back, transferring energy stored in a
muscle to mechanical energy.This launching mechanism produces an
audible click, giving the beetle its name. Videotape of a certain click-
beetle jump shows that a beetle of mass m � 4.0 � 10�6 kg moved di-
rectly upward by 0.77 mm during the launch and then to a maximum
height of h � 0.30 m. During the launch, what are the average mag-
nitudes of (a) the external force on the beetle’s back from the floor
and (b) the acceleration of the beetle in terms  of g?

•••62 In Fig. 8-55, a block slides along a path that is without fric-
tion until the block reaches the section of length L 0.75 m, which
begins at height h � 2.0 m on a ramp of angle u � 30�. In that sec-
tion, the coefficient of kinetic friction is 0.40. The block passes
through point A with a speed of 8.0 m/s. If the block can reach point
B (where the friction ends), what is its speed there, and if it cannot,
what is its greatest height above A?

�

θ A
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L
B

Figure 8-55 Problem 62.
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Figure 8-57 Problem 64.
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Figure 8-58 Problem 65.
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Figure 8-56
Problem 63.



between snow and skis would make him stop just at the top of
the lower peak?

73 The temperature of a plastic cube is monitored while the
cube is pushed 3.0 m across a floor at constant speed by a horizon-
tal force of 15 N. The thermal energy of the cube increases by 20 J.
What is the increase in the thermal energy of the floor along which
the cube slides?

74 A skier weighing 600 N goes over a frictionless circular hill
of radius R 20 m (Fig. 8-62). Assume that the effects of air re-
sistance on the skier are negligible. As she comes up the hill, her
speed is 8.0 m/s at point B, at angle u � 20�. (a) What is her
speed at the hilltop (point A) if she coasts without using her
poles? (b) What minimum speed can she have at B and still coast
to the hilltop? (c) Do the answers to these two questions in-
crease, decrease, or remain the same if the skier weighs 700 N 
instead of 600 N?

�
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67 A spring (k 200 N/m) is
fixed at the top of a frictionless plane
inclined at angle 40� (Fig. 8-59). A
1.0 kg block is projected up the plane,
from an initial position that is distance 
d 0.60 m from the end of the relaxed
spring, with an initial kinetic energy of
16 J. (a) What is the kinetic energy of
the block at the instant it has com-
pressed the spring 0.20 m? (b) With
what kinetic energy must the block be
projected up the plane if it is to stop momentarily when it has
compressed the spring by 0.40 m?

68 From the edge of a cliff, a 0.55 kg projectile is launched
with an initial kinetic energy of 1550 J. The projectile’s maximum
upward displacement from the launch point is �140 m. What
are the (a) horizontal and (b) vertical components of its launch
velocity? (c) At the instant the vertical component of its velocity
is 65 m/s, what is its vertical displacement from the launch
point?

69 In Fig. 8-60, the pulley has
negligible mass, and both it and the
inclined plane are frictionless. Block
A has a mass of 1.0 kg, block B has a
mass of 2.0 kg, and angle u is 30�. If
the blocks are released from rest
with the connecting cord taut, what
is their total kinetic energy when
block B has fallen 25 cm?

70 In Fig. 8-38, the string is L � 120 cm long, has a ball
attached to one end, and is fixed at its other end. A fixed peg is at
point P. Released from rest, the ball swings down until the string
catches on the peg; then the ball swings up, around the peg. If the
ball is to swing completely around the peg, what value must dis-
tance d exceed? (Hint: The ball must still be moving at the top of
its swing. Do you see why?)

71 In Fig. 8-51, a block is sent sliding down a frictionless
ramp. Its speeds at points A and B are 2.00 m/s and 2.60 m/s, re-
spectively. Next, it is again sent sliding down the ramp, but this
time its speed at point A is 4.00 m/s. What then is its speed at
point B?

72 Two snowy peaks are at heights H 850 m and h 750 m
above the valley between them. A ski run extends between
the peaks, with a total length of 3.2 km and an average slope of

30� (Fig. 8-61). (a) A skier starts from rest at the top of
the higher peak. At what speed will he arrive at the top of
the lower peak if he coasts without using ski poles? Ignore fric-
tion. (b) Approximately what coefficient of kinetic friction

� �
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Figure 8-59 Problem 67.

Outward Inward

(a) �3.0 �3.0
(b) �5.0 �5.0
(c) �2.0x �2.0x

(d) �3.0x2 �3.0x2
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Figure 8-60 Problem 69.

Hh

θ θ 

Figure 8-61 Problem 72.
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Figure 8-62 Problem 74.

Find the net work done on the particle by the external force for the
round trip for each of the four situations. (e) For which, if any, is the
external force conservative?

77 A conservative force F(x) acts on a 2.0 kg particle that
moves along an x axis. The potential energy U(x) associated with
F(x) is graphed in Fig. 8-63. When the particle is at x 2.0 m, its�

SSM

75 To form a pendulum, a 0.092 kg ball is attached to one end
of a rod of length 0.62 m and negligible mass, and the other end of
the rod is mounted on a pivot. The rod is rotated until it is straight
up, and then it is released from rest so that it swings down around
the pivot. When the ball reaches its lowest point, what are (a) its
speed and (b) the tension in the rod? Next, the rod is rotated until it
is horizontal, and then it is again released from rest. (c) At what an-
gle from the vertical does the tension in the rod equal the weight of
the ball? (d) If the mass of the ball is increased, does the answer to
(c) increase, decrease, or remain the same?

76 We move a particle along an x axis, first outward from x 1.0 m
to x 4.0 m and then back to x 1.0 m, while an external force
acts on it. That force is directed along the x axis, and its x compo-
nent can have different values for the outward trip and for the re-
turn trip. Here are the values (in newtons) for four situations, where
x is in meters:

��
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velocity is �1.5 m/s. What are the (a) magnitude and (b) direction
of F(x) at this position? Between what positions on the (c) left and
(d) right does the particle move? (e) What is the particle’s speed at
x 7.0 m?�

81 A particle can move along only an x axis, where conservative
forces act on it (Fig. 8-66 and the following table). The particle is
released at x 5.00 m with a kinetic energy of K 14.0 J and a
potential energy of U 0. If its motion is in the negative direction
of the x axis, what are its (a) K and (b) U at x 2.00 m and its
(c) K and (d) U at x 0? If its motion is in the positive direction of
the x axis, what are its (e) K and (f) U at x 11.0 m, its (g) K and
(h) U at x 12.0 m, and its (i) K and ( j) U at x 13.0 m? (k) Plot
U(x) versus x for the range x 0 to x 13.0 m.��
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Figure 8-63 Problem 77.

78 At a certain factory, 300 kg
crates are dropped vertically from
a packing machine onto a conveyor
belt moving at 1.20 m/s (Fig. 8-64).
(A motor maintains the belt’s con-
stant speed.) The coefficient of ki-
netic friction between the belt and
each crate is 0.400. After a short
time, slipping between the belt and
the crate ceases, and the crate then moves along with the belt. For
the period of time during which the crate is being brought to rest
relative to the belt, calculate, for a coordinate system at rest in
the factory, (a) the kinetic energy supplied to the crate, (b) the
magnitude of the kinetic frictional force acting on the crate, and
(c) the energy supplied by the motor. (d) Explain why answers
(a) and (c) differ.

79 A 1500 kg car begins sliding down a 5.0� inclined road
with a speed of 30 km/h. The engine is turned off, and the only
forces acting on the car are a net frictional force from the road and
the gravitational force. After the car has traveled 50 m along the
road, its speed is 40 km/h. (a) How much is the mechanical energy
of the car reduced because of the net frictional force? (b) What is
the magnitude of that net frictional force?

80 In Fig. 8-65, a 1400 kg block of granite is pulled up an incline
at a constant speed of 1.34 m/s by a cable and winch. The indicated
distances are d1 40 m and d2 30 m. The coefficient of kinetic
friction between the block and the incline is 0.40. What is the
power due to the force applied to the block by the cable?
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Figure 8-65 Problem 80.
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Figure 8-64 Problem 78.
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Figure 8-66 Problems 81 and 82.

Range Force

0 to 2.00 m
2.00 m to 3.00 m
3.00 m to 8.00 m F 0

8.00 m to 11.0 m

11.0 m to 12.0 m

12.0 m to 15.0 m F � 0

F
:

4 � �(1.00 N)î

F
:

3 � �(4.00 N)î

�

F
:

2 � �(5.00 N)î
F
:

1 � �(3.00 N)î

Next, the particle is released from rest at x 0. What are (l) its
kinetic energy at x 5.0 m and (m) the maximum positive position
xmax it reaches? (n) What does the particle do after it reaches xmax?

�
�

82 For the arrangement of forces in Problem 81, a 2.00 kg parti-
cle is released at x 5.00 m with an initial velocity of 3.45 m/s in
the negative direction of the x axis. (a) If the particle can reach
x 0 m, what is its speed there, and if it cannot, what is its turning
point? Suppose, instead, the particle is headed in the positive x di-
rection when it is released at x 5.00 m at speed 3.45 m/s. (b) If
the particle can reach x 13.0 m, what is its speed there, and if it
cannot, what is its turning point?

83 A 15 kg block is accelerated at 2.0 m/s2 along a horizon-
tal frictionless surface, with the speed increasing from 10 m/s to
30 m/s. What are (a) the change in the block’s mechanical energy
and (b) the average rate at which energy is transferred to the
block? What is the instantaneous rate of that transfer when the
block’s speed is (c) 10 m/s and (d) 30 m/s?

84 A certain spring is found not to conform to Hooke’s law. The
force (in newtons) it exerts when stretched a distance x (in meters)
is found to have magnitude 52.8x � 38.4x2 in the direction oppos-
ing the stretch. (a) Compute the work required to stretch the
spring from x 0.500 m to x 1.00 m. (b) With one end of the
spring fixed, a particle of mass 2.17 kg is attached to the other end
of the spring when it is stretched by an amount x 1.00 m. If the
particle is then released from rest, what is its speed at the instant
the stretch in the spring is x 0.500 m? (c) Is the force exerted by
the spring conservative or nonconservative? Explain.

85 Each second, 1200 m3 of water passes over a waterfall
100 m high. Three-fourths of the kinetic energy gained by the water
in falling is transferred to electrical energy by a hydroelectric gener-
ator. At what rate does the generator produce electrical energy?
(The mass of 1 m3 of water is 1000 kg.)
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a spring of spring constant k � 200 N/m that has one end fixed, as
shown in Fig. 8-69. The horizontal
surface and the pulley are friction-
less, and the pulley has negligible
mass. The blocks are released from
rest with the spring relaxed.
(a) What is the combined kinetic
energy of the two blocks when the
hanging block has fallen 0.090 m?
(b) What is the kinetic energy of
the hanging block when it has
fallen that 0.090 m? (c) What maxi-
mum distance does the hanging block fall before momentarily
stopping?

92 A volcanic ash flow is moving across horizontal ground when
it encounters a 10� upslope. The front of the flow then travels 920
m up the slope before stopping. Assume that the gases entrapped
in the flow lift the flow and thus make the frictional force from the
ground negligible; assume also that the mechanical energy of
the front of the flow is conserved.What was the initial speed of the
front of the flow?

93 A playground slide is in the form of an arc of a circle that has
a radius of 12 m.The maximum height of the slide is h � 4.0 m, and
the ground is tangent to the circle (Fig. 8-70). A 25 kg child starts
from rest at the top of the slide and has a speed of 6.2 m/s at the
bottom. (a) What is the length of the slide? (b) What average fric-
tional force acts on the child over this distance? If, instead of the
ground, a vertical line through the top of the slide is tangent to the
circle, what are (c) the length of the slide and (d) the average fric-
tional force on the child?

210 CHAPTER 8 POTENTIAL ENERGY AND CONSERVATION OF ENERGY

86 In Fig. 8-67, a small block is sent through point A with a
speed of 7.0 m/s. Its path is without friction until it reaches the sec-
tion of length L 12 m, where the coefficient of kinetic friction is
0.70. The indicated heights are h1 6.0 m and h2 2.0 m. What
are the speeds of the block at (a) point B and (b) point C? (c) Does
the block reach point D? If so, what is its speed there; if not, how far
through the section of friction does it travel?

��
�

91 Two blocks, of masses M �2.0 kg and 2M, are connected to

A

B

C Dh1

h2
L

Figure 8-67 Problem 86.

87 A massless rigid rod of
length L has a ball of mass m
attached to one end (Fig. 8-68). The
other end is pivoted in such a way
that the ball will move in a vertical
circle. First, assume that there is no
friction at the pivot. The system is
launched downward from the hori-
zontal position A with initial speed
v0. The ball just barely reaches point
D and then stops. (a) Derive an ex-
pression for v0 in terms of L, m, and
g. (b) What is the tension in the rod
when the ball passes through B? (c) A little grit is placed on the
pivot to increase the friction there. Then the ball just barely
reaches C when launched from A with the same speed as before.
What is the decrease in the mechanical energy during this motion?
(d) What is the decrease in the mechanical energy by the time the
ball finally comes to rest at B after several oscillations?

88 A 1.50 kg water balloon is shot straight up with an initial speed
of 3.00 m/s. (a) What is the kinetic energy of the balloon just as it is
launched? (b) How much work does the gravitational force do on
the balloon during the balloon’s full ascent? (c) What is the change
in the gravitational potential energy of the balloon–Earth system
during the full ascent? (d) If the gravitational potential energy is
taken to be zero at the launch point, what is its value when the bal-
loon reaches its maximum height? (e) If, instead, the gravitational
potential energy is taken to be zero at the maximum height, what is
its value at the launch point? (f) What is the maximum height?

89 A 2.50 kg beverage can is thrown directly downward from a
height of 4.00 m, with an initial speed of 3.00 m/s. The air drag on
the can is negligible. What is the kinetic energy of the can (a) as it
reaches the ground at the end of its fall and (b) when it is halfway
to the ground? What are (c) the kinetic energy of the can and (d)
the gravitational potential energy of the can–Earth system 0.200 s
before the can reaches the ground? For the latter, take the refer-
ence point y � 0 to be at the ground.

90 A constant horizontal force moves a 50 kg trunk 6.0 m up a
30� incline at constant speed. The coefficient of kinetic friction is
0.20. What are (a) the work done by the applied force and (b) the
increase in the thermal energy of the trunk and incline?

SSM

2M

M

Figure 8-69 Problem 91.

h

Figure 8-70 Problem 93.

v0

D

B

A L C

Pivot
point

Rod

Figure 8-68 Problem 87.

94 The luxury liner Queen Elizabeth 2 has a diesel-electric
power plant with a maximum power of 92 MW at a cruising speed
of 32.5 knots. What forward force is exerted on the ship at this
speed? (1 knot � 1.852 km/h.)

95 A factory worker accidentally releases a 180 kg crate that was
being held at rest at the top of a ramp that is 3.7 m long and in-
clined at 39� to the horizontal.The coefficient of kinetic friction be-
tween the crate and the ramp, and between the crate and the hori-
zontal factory floor, is 0.28. (a) How fast is the crate moving as it
reaches the bottom of the ramp? (b) How far will it subsequently
slide across the floor? (Assume that the crate’s kinetic energy does
not change as it moves from the ramp onto the floor.) (c) Do the
answers to (a) and (b) increase, decrease, or remain the same if we
halve the mass of the crate?

96 If a 70 kg baseball player steals home by sliding into the plate
with an initial speed of 10 m/s just as he hits the ground, (a) what
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is the decrease in the player’s kinetic energy and (b) what is the 
increase in the thermal energy of his body and the ground along
which he slides?

97 A 0.50 kg banana is thrown directly upward with an initial
speed of 4.00 m/s and reaches a maximum height of 0.80 m. What
change does air drag cause in the mechanical energy of the
banana–Earth system during the ascent?

98 A metal tool is sharpened by being held against the rim of a
wheel on a grinding machine by a force of 180 N. The frictional
forces between the rim and the tool grind off small pieces of the
tool. The wheel has a radius of 20.0 cm and rotates at 2.50 rev/s.
The coefficient of kinetic friction between the wheel and the tool is
0.320. At what rate is energy being transferred from the motor
driving the wheel to the thermal energy of the wheel and tool and
to the kinetic energy of the material thrown from the tool?

99 A swimmer moves through the water at an average speed of
0.22 m/s. The average drag force is 110 N. What average power is
required of the swimmer?

100 An automobile with passengers has weight 16 400 N and is
moving at 113 km/h when the driver brakes, sliding to a stop. The
frictional force on the wheels from the road has a magnitude of
8230 N. Find the stopping distance.

101 A 0.63 kg ball thrown directly upward with an initial speed
of 14 m/s reaches a maximum height of 8.1 m. What is the change
in the mechanical energy of the ball–Earth system during the 
ascent of the ball to that maximum height?

102 The summit of Mount Everest is 8850 m above sea level.
(a) How much energy would a 90 kg climber expend against the
gravitational force on him in climbing to the summit from sea
level? (b) How many candy bars, at 1.25 MJ per bar, would supply
an energy equivalent to this? Your answer should suggest that
work done against the gravitational force is a very small part of the
energy expended in climbing a mountain.

103 A sprinter who weighs 670 N runs the first 7.0 m of a race in
1.6 s, starting from rest and accelerating uniformly. What are the
sprinter’s (a) speed and (b) kinetic energy at the end of the 1.6 s?
(c) What average power does the sprinter generate during the 1.6 s
interval?

104 A 20 kg object is acted on by a conservative force given by
F � �3.0x � 5.0x2, with F in newtons and x in meters. Take the
potential energy associated with the force to be zero when the
object is at x � 0. (a) What is the potential energy of the system
associated with the force when the object is at x � 2.0 m? (b) If
the object has a velocity of 4.0 m/s in the negative direction of the
x axis when it is at x � 5.0 m, what is its speed when it passes
through the origin? (c) What are the answers to (a) and (b) if the
potential energy of the system is taken to be �8.0 J when the ob-
ject is at x � 0?

105 A machine pulls a 40 kg trunk 2.0 m up a 40� ramp at con-
stant velocity, with the machine’s force on the trunk directed paral-
lel to the ramp. The coefficient of kinetic friction between the
trunk and the ramp is 0.40. What are (a) the work done on the
trunk by the machine’s force and (b) the increase in thermal en-
ergy of the trunk and the ramp?

106 The spring in the muzzle of a child’s spring gun has a spring
constant of 700 N/m. To shoot a ball from the gun, first the spring is
compressed and then the ball is placed on it. The gun’s trigger then

releases the spring, which pushes the ball through the muzzle. The
ball leaves the spring just as it leaves the outer end of the muzzle.
When the gun is inclined upward by 30� to the horizontal, a 57 g ball
is shot to a maximum height of 1.83 m above the gun’s muzzle.
Assume air drag on the ball is negligible. (a) At what speed does
the spring launch the ball? (b) Assuming that friction on the ball
within the gun can be neglected, find the spring’s initial compres-
sion distance.

107 The only force acting on a particle is conservative force . If
the particle is at point A, the potential energy of the system associ-
ated with and the particle is 40 J. If the particle moves from point
A to point B, the work done on the particle by is �25 J. What is
the potential energy of the system with the particle at B?

108 In 1981, Daniel Goodwin climbed 443 m up the exterior of
the Sears Building in Chicago using suction cups and metal clips.
(a) Approximate his mass and then compute how much energy he
had to transfer from biomechanical (internal) energy to the gravi-
tational potential energy of the Earth–Goodwin system to lift
himself to that height. (b) How much energy would he have had to
transfer if he had, instead, taken the stairs inside the building (to
the same height)?

109 A 60.0 kg circus performer slides 4.00 m down a pole to the
circus floor, starting from rest. What is the kinetic energy of the
performer as she reaches the floor if the frictional force on her
from the pole (a) is negligible (she will be hurt) and (b) has a mag-
nitude of 500 N?

110 A 5.0 kg block is projected at 5.0 m/s up a plane that is
inclined at 30� with the horizontal. How far up along the
plane does the block go (a) if the plane is frictionless and (b) if the
coefficient of kinetic friction between the block and the plane is
0.40? (c) In the latter case, what is the increase in thermal energy
of block and plane during the block’s ascent? (d) If the block then
slides back down against the frictional force, what is the block’s
speed when it reaches the original projection point?

111 A 9.40 kg projectile is fired vertically upward. Air drag de-
creases the mechanical energy of the projectile–Earth system by
68.0 kJ during the projectile’s ascent. How much higher would the
projectile have gone were air drag negligible?

112 A 70.0 kg man jumping from a window lands in an elevated
fire rescue net 11.0 m below the window. He momentarily stops
when he has stretched the net by 1.50 m. Assuming that mechani-
cal energy is conserved during this process and that the net func-
tions like an ideal spring, find the elastic potential energy of the net
when it is stretched by 1.50 m.

113 A 30 g bullet moving a horizontal velocity of 500 m/s comes
to a stop 12 cm within a solid wall. (a) What is the change in the
bullet’s mechanical energy? (b) What is the magnitude of the aver-
age force from the wall stopping it?

114 A 1500 kg car starts from rest on a horizontal road and
gains a speed of 72 km/h in 30 s. (a) What is its kinetic energy at
the end of the 30 s? (b) What is the average power required of the
car during the 30 s interval? (c) What is the instantaneous power
at the end of the 30 s interval, assuming that the acceleration is
constant?

115 A 1.50 kg snowball is shot upward at an angle of 34.0� to the
horizontal with an initial speed of 20.0 m/s. (a) What is its initial
kinetic energy? (b) By how much does the gravitational potential
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124 The magnitude of the gravitational force between a particle
of mass m1 and one of mass m2 is given by

F(x) �

where G is a constant and x is the distance between the particles.
(a) What is the corresponding potential energy function U(x)?
Assume that U(x) 0 as x and that x is positive. (b) How
much work is required to increase the separation of the particles
from x � x1 to x � x1 � d?

125 Approximately 5.5 � 106 kg of water falls 50 m over
Niagara Falls each second. (a) What is the decrease in the gravi-
tational potential energy of the water–Earth system each sec-
ond? (b) If all this energy could be converted to electrical
energy (it cannot be), at what rate would electrical energy be
supplied? (The mass of 1 m3 of water is 1000 kg.) (c) If the elec-
trical energy were sold at 1 cent/kW h, what would be the yearly
income?

126 To make a pendulum, a 300 g ball is attached to one end of
a string that has a length of 1.4 m and negligible mass. (The other
end of the string is fixed.) The ball is pulled to one side until the
string makes an angle of 30.0� with the vertical; then (with
the string taut) the ball is released from rest. Find (a) the speed of
the ball when the string makes an angle of 20.0� with the vertical
and (b) the maximum speed of the ball. (c) What is the angle be-
tween the string and the vertical when the speed of the ball is
one-third its maximum value?

127 In a circus act, a 60 kg clown is shot from a cannon with an
initial velocity of 16 m/s at some unknown angle above the hori-
zontal. A short time later the clown lands in a net that is 3.9 m ver-
tically above the clown’s initial position. Disregard air drag. What
is the kinetic energy of the clown as he lands in the net?

128 A 70 kg firefighter slides, from rest, 4.3 m down a vertical
pole. (a) If the firefighter holds onto the pole lightly, so that the
frictional force of the pole on her is negligible, what is her speed
just before reaching the ground floor? (b) If the firefighter grasps
the pole more firmly as she slides, so that the average frictional
force of the pole on her is 500 N upward, what is her speed just be-
fore reaching the ground floor?

129 The surface of the continental United States has an area of
about 8 � 106 km2 and an average elevation of about 500 m
(above sea level). The average yearly rainfall is 75 cm. The frac-
tion of this rainwater that returns to the atmosphere by evapora-
tion is ; the rest eventually flows into the ocean. If the decrease
in gravitational potential energy of the water–Earth system asso-
ciated with that flow could be fully converted to electrical en-
ergy, what would be the average power? (The mass of 1 m3 of
water is 1000 kg.)

130 A spring with spring constant k � 200 N/m is suspended
vertically with its upper end fixed to the ceiling and its lower
end at position y � 0. A block of weight 20 N is attached to the
lower end, held still for a moment, and then released. What are
(a) the kinetic energy K, (b) the change (from the initial value)
in the gravitational potential energy �Ug, and (c) the change in
the elastic potential energy �Ue of the spring–block system when
the block is at y � �5.0 cm? What are (d) K, (e) �Ug, and (f) �Ue

when y � �10 cm, (g) K, (h) �Ug, and (i) �Ue when y � �15 cm,
and (j) K, (k) �Ug, and (l) �Ue when y � �20 cm?
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energy of the snowball–Earth system change as the snowball
moves from the launch point to the point of maximum height? (c)
What is that maximum height?

116 A 68 kg sky diver falls at a constant terminal speed of
59 m/s. (a) At what rate is the gravitational potential energy of the
Earth–sky diver system being reduced? (b) At what rate is the sys-
tem’s mechanical energy being reduced?

117 A 20 kg block on a horizontal surface is attached to a hori-
zontal spring of spring constant k � 4.0 kN/m. The block is pulled
to the right so that the spring is stretched 10 cm beyond its relaxed
length, and the block is then released from rest.The frictional force
between the sliding block and the surface has a magnitude of 80 N.
(a) What is the kinetic energy of the block when it has moved
2.0 cm from its point of release? (b) What is the kinetic energy of
the block when it first slides back through the point at which the
spring is relaxed? (c) What is the maximum kinetic energy attained
by the block as it slides from its point of release to the point at
which the spring is relaxed?

118 Resistance to the motion of an automobile consists of road
friction, which is almost independent of speed, and air drag, which
is proportional to speed-squared. For a certain car with a weight of
12 000 N, the total resistant force F is given by F � 300 � 1.8v2,
with F in newtons and v in meters per second. Calculate the power
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(in horsepower) required to accelerate the car at 0.92 m/s2 when
the speed is 80 km/h.

119 A 50 g ball is thrown from a window with an initialSSM

velocity of 8.0 m/s at an angle of 30� above the horizontal. Using
energy methods, determine (a) the kinetic energy of the ball at the
top of its flight and (b) its speed when it is 3.0 m below the window.
Does the answer to (b) depend on either (c) the mass of the ball or
(d) the initial angle?

120 A spring with a spring constant of 3200 N/m is initially
stretched until the elastic potential energy of the spring is 1.44 J.
(U � 0 for the relaxed spring.) What is �U if the initial stretch is
changed to (a) a stretch of 2.0 cm, (b) a compression of 2.0 cm, and
(c) a compression of 4.0 cm?

121 A locomotive with a power capability of 1.5 MW can
accelerate a train from a speed of 10 m/s to 25 m/s in 6.0 min. (a)
Calculate the mass of the train. Find (b) the speed of the train and
(c) the force accelerating the train as functions of time (in seconds)
during the 6.0 min interval. (d) Find the distance moved by the
train during the interval.

122 A 0.42 kg shuffleboard disk is initially at rest when a
player uses a cue to increase its speed to 4.2 m/s at constant ac-
celeration. The acceleration takes place over a 2.0 m distance, at
the end of which the cue loses contact with the disk. Then the
disk slides an additional 12 m before stopping. Assume that the
shuffleboard court is level and that the force of friction on the
disk is constant. What is the increase in the thermal energy of the
disk – court system (a) for that additional 12 m and (b) for the
entire 14 m distance? (c) How much work is done on the disk by
the cue?

123 A river descends 15 m through rapids. The speed of the wa-
ter is 3.2 m/s upon entering the rapids and 13 m/s upon leaving.
What percentage of the gravitational potential energy of the 
water–Earth system is transferred to kinetic energy during the de-
scent? (Hint: Consider the descent of, say, 10 kg of water.)

SSM



131 Fasten one end of a vertical spring to a ceiling, attach a cab-
bage to the other end, and then slowly lower the cabbage until the
upward force on it from the spring balances the gravitational force
on it. Show that the loss of gravitational potential energy of the
cabbage–Earth system equals twice the gain in the spring’s poten-
tial energy.

132 The maximum force you can exert on an object with one of
your back teeth is about 750 N. Suppose that as you gradually bite
on a clump of licorice, the licorice resists compression by one of
your teeth by acting like a spring for which k � 2.5 � 105 N/m. Find
(a) the distance the licorice is compressed by your tooth and
(b) the work the tooth does on the licorice during the compression.
(c) Plot the magnitude of your force versus the compression 
distance. (d) If there is a potential energy associated with this com-
pression, plot it versus compression distance.

In the 1990s the pelvis of a particular Triceratops dinosaur was
found to have deep bite marks. The shape of the marks suggested
that they were made by a Tyrannosaurus rex dinosaur. To test the
idea, researchers made a replica of a T. rex tooth from bronze and
aluminum and then used a hydraulic press to gradually drive the
replica into cow bone to the depth seen in the Triceratops bone. A
graph of the force required versus depth of penetration is given in
Fig. 8-71 for one trial; the required force increased with depth be-
cause, as the nearly conical tooth penetrated the bone, more of the
tooth came in contact with the bone. (e) How much work was done
by the hydraulic press—and thus presumably by the T. rex—in
such a penetration? (f) Is there a potential energy associated with
this penetration? (The large biting force and energy expenditure

attributed to the T. rex by this research suggest that the animal was
a predator and not a scavenger.)

133 Conservative force F(x)
acts on a particle that moves
along an x axis. Figure 8-72
shows how the potential energy
U(x) associated with force F(x)
varies with the position of the
particle, (a) Plot F(x) for the
range 0 � x � 6 m. (b) The me-
chanical energy E of the system
is 4.0 J. Plot the kinetic energy
K(x) of the particle directly on
Fig. 8-72.

134 Figure 8-73a shows a mol-
ecule consisting of two atoms of
masses m and M (with m M)
and separation r. Figure 8-73b
shows the potential energy U(r)
of the molecule as a function of
r. Describe the motion of the
atoms (a) if the total mechanical
energy E of the two-atom sys-
tem is greater than zero (as is
E1), and (b) if E is less than zero
(as is E2). For E1 � 1 � 10�19 J
and r � 0.3 nm, find (c) the po-
tential energy of the system, (d)
the total kinetic energy of the
atoms, and (e) the force (magni-
tude and direction) acting on
each atom. For what values of r
is the force (f) repulsive, (g) at-
tractive, and (h) zero?

135 Repeat Problem 83, but now with the block accelerated up a
frictionless plane inclined at 5.0� to the horizontal.

136 A spring with spring constant k � 620 N/m is placed in a ver-
tical orientation with its lower end supported by a horizontal sur-
face. The upper end is depressed 25 cm, and a block with a weight
of 50 N is placed (unattached) on the depressed spring. The system
is then released from rest. Assume that the gravitational potential
energy Ug of the block is zero at the release point (y � 0) and cal-
culate the kinetic energy K of the block for y equal to (a) 0,
(b) 0.050 m, (c) 0.10 m, (d) 0.15 m, and (e) 0.20 m. Also, (f) how far
above its point of release does the block rise?
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What Is Physics?
Every mechanical engineer who is hired as a courtroom expert witness to recon-
struct a traffic accident uses physics. Every dance trainer who coaches a ballerina
on how to leap uses physics. Indeed, analyzing complicated motion of any sort re-
quires simplification via an understanding of physics. In this chapter we discuss
how the complicated motion of a system of objects, such as a car or a ballerina,
can be simplified if we determine a special point of the system—the center of
mass of that system.

Here is a quick example. If you toss a ball into the air without much spin on the
ball (Fig. 9-1a), its motion is simple—it follows a parabolic path, as we discussed in
Chapter 4, and the ball can be treated as a particle. If, instead, you flip a baseball bat
into the air (Fig. 9-1b), its motion is more complicated. Because every part of the bat
moves differently, along paths of many different shapes, you cannot represent the
bat as a particle. Instead, it is a system of particles each of which follows its own path
through the air. However, the bat has one special point—the center of mass—that
does move in a simple parabolic path. The other parts of the bat move around the
center of mass. (To locate the center of mass, balance the bat on an outstretched fin-
ger; the point is above your finger, on the bat’s central axis.)

You cannot make a career of flipping baseball bats into the air, but you can
make a career of advising long-jumpers or dancers on how to leap properly into
the air while either moving their arms and legs or rotating their torso. Your
starting point would be to determine the person’s center of mass because of its
simple motion.

C H A P T E R  9

Center of Mass and Linear Momentum

9-1 CENTER OF MASS 

After reading this module, you should be able to . . .

9.01 Given the positions of several particles along an axis or
a plane, determine the location of their center of mass.

9.02 Locate the center of mass of an extended, symmetric
object by using the symmetry.

9.03 For a two-dimensional or three-dimensional extended ob-
ject with a uniform distribution of mass, determine the center
of mass by (a) mentally dividing the object into simple geomet-
ric figures, each of which can be replaced by a particle at its
center and (b) finding the center of mass of those particles.

● The center of mass of a system of n particles is defined to be the point whose coordinates are given by

or

where M is the total mass of the system.
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2159-1 CENTER OF MASS

The Center of Mass
We define the center of mass (com) of a system of particles (such as a person) in
order to predict the possible motion of the system.

Here we discuss how to determine where the center of mass of a system of parti-
cles is located.We start with a system of only a few particles, and then we consider
a system of a great many particles (a solid body, such as a baseball bat). Later in
the chapter, we discuss how the center of mass of a system moves when external
forces act on the system.

Systems of Particles
Two Particles. Figure 9-2a shows two particles of masses m1 and m2 separated by dis-
tance d.We have arbitrarily chosen the origin of an x axis to coincide with the particle
of mass m1.We define the position of the center of mass (com) of this two-particle sys-
tem to be

(9-1)

Suppose, as an example, that m2 � 0. Then there is only one particle, of mass m1,
and the center of mass must lie at the position of that particle;Eq.9-1 dutifully reduces
to xcom � 0. If m1 � 0, there is again only one particle (of mass m2), and we have, as we
expect, xcom � d. If m1 � m2, the center of mass should be halfway between the two
particles; Eq. 9-1 reduces to again as we expect. Finally, Eq. 9-1 tells us that
if neither m1 nor m2 is zero, xcom can have only values that lie between zero and d; that
is, the center of mass must lie somewhere between the two particles.

We are not required to place the origin of the coordinate system on one of
the particles. Figure 9-2b shows a more generalized situation, in which the coordi-
nate system has been shifted leftward. The position of the center of mass is now
defined

as (9-2)

Note that if we put x1 � 0, then x2 becomes d and Eq. 9-2 reduces to Eq. 9-1, as
it must. Note also that in spite of the shift of the coordinate system, the center

xcom �
m1x1 � m2x2

m1 � m2
.

xcom � 1
2d,

xcom �
m2

m1 � m2
d.

Figure 9-1 (a) A ball tossed into the air
follows a parabolic path. (b) The center 
of mass (black dot) of a baseball bat
flipped into the air follows a parabolic 
path, but all other points of the bat 
follow more complicated curved paths.

(a)

(b)
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ap
hsThe center of mass of a system of particles is the point that moves as though

(1) all of the system’s mass were concentrated there and (2) all external forces
were applied there.

Figure 9-2 (a) Two particles of masses m1 and m2 are separated by distance d. The dot
labeled com shows the position of the center of mass, calculated from Eq. 9-1. (b) The
same as (a) except that the origin is located farther from the particles. The position of
the center of mass is calculated from Eq. 9-2. The location of the center of mass with
respect to the particles is the same in both cases.

x

y

xcom

x1 d
com

m1 m2

x2

(b)

x

y

xcom

d
com

m1 m2

(a)

This is the center of mass
of the two-particle system.

Shifting the axis
does not change
the relative position
of the com.



of mass is still the same distance from each particle. The com is a property of the
physical particles, not the coordinate system we happen to use.

We can rewrite Eq. 9-2 as

(9-3)

in which M is the total mass of the system. (Here, M � m1 � m2.)
Many Particles. We can extend this equation to a more general situation in

which n particles are strung out along the x axis.Then the total mass is M � m1 �
m2 � � mn, and the location of the center of mass is

(9-4)

The subscript i is an index that takes on all integer values from 1 to n.
Three Dimensions. If the particles are distributed in three dimensions, the cen-

ter of mass must be identified by three coordinates. By extension of Eq. 9-4, they are

(9-5)

We can also define the center of mass with the language of vectors. First
recall that the position of a particle at coordinates xi, yi, and zi is given by a posi-
tion vector (it points from the origin to the particle):

(9-6)

Here the index identifies the particle, and î, ĵ, and k̂ are unit vectors pointing,
respectively, in the positive direction of the x, y, and z axes. Similarly, the position
of the center of mass of a system of particles is given by a position vector:

(9-7)

If you are a fan of concise notation, the three scalar equations of Eq. 9-5 can now
be replaced by a single vector equation,

(9-8)

where again M is the total mass of the system. You can check that this equation
is correct by substituting Eqs. 9-6 and 9-7 into it, and then separating out the x,
y, and z components.The scalar relations of Eq. 9-5 result.

Solid Bodies
An ordinary object, such as a baseball bat, contains so many particles (atoms)
that we can best treat it as a continuous distribution of matter. The “particles”
then become differential mass elements dm, the sums of Eq. 9-5 become inte-
grals, and the coordinates of the center of mass are defined as

(9-9)

where M is now the mass of the object.The integrals effectively allow us to use Eq.
9-5 for a huge number of particles, an effort that otherwise would take many years.

Evaluating these integrals for most common objects (such as a television set or
a moose) would be difficult, so here we consider only uniform objects. Such objects
have uniform density, or mass per unit volume; that is, the density r (Greek letter

xcom �
1
M

� x dm,    ycom �
1
M

� y dm,    zcom �
1
M

� z dm,

rcom
: �

1
M �

n

i�1
miri

:,

rcom
: � xcomî � ycomĵ � zcomk̂.

ri
: � xi î � yi ĵ � zi k̂.

xcom �
1
M �

n

i�1
mixi,    ycom �

1
M �

n

i�1
miyi,    zcom �

1
M �

n

i�1
mizi.

�
1
M �

n

i�1
mi xi .

xcom �
m1x1 � m2 x2 � m3x3 � 
 
 
 � mnxn

M


 
 


xcom �
m1x1 � m2x2

M
,
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rho) is the same for any given element of an object as for the whole object. From
Eq. 1-8, we can write

(9-10)

where dV is the volume occupied by a mass element dm, and V is the total vol-
ume of the object. Substituting dm � (M /V) dV from Eq. 9-10 into Eq. 9-9 gives

(9-11)

Symmetry as a Shortcut. You can bypass one or more of these integrals if
an object has a point, a line, or a plane of symmetry. The center of mass of such
an object then lies at that point, on that line, or in that plane. For example, the
center of mass of a uniform sphere (which has a point of symmetry) is at the
center of the sphere (which is the point of symmetry). The center of mass of a
uniform cone (whose axis is a line of symmetry) lies on the axis of the cone. The
center of mass of a banana (which has a plane of symmetry that splits it into two
equal parts) lies somewhere in the plane of symmetry.

The center of mass of an object need not lie within the object. There is no
dough at the com of a doughnut, and no iron at the com of a horseshoe.

xcom �
1
V
� x dV,  ycom �

1
V
� y dV,  zcom �

1
V
� z dV.

r �
dm
dV

�
M
V

,
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sides (Fig. 9-3). The three particles then have the following
coordinates:

Particle Mass (kg) x (cm) y (cm)

1 1.2 0 0
2 2.5 140 0
3 3.4 70 120

The total mass M of the system is 7.1 kg.
From Eq. 9-5, the coordinates of the center of mass are

(Answer)

and

(Answer)

In Fig. 9-3, the center of mass is located by the position vec-
tor , which has components xcom and ycom. If we had
chosen some other orientation of the coordinate system,
these coordinates would be different but the location of the
com relative to the particles would be the same.

r:com

� 58 cm.

�
(1.2 kg)(0) � (2.5 kg)(0) � (3.4 kg)(120 cm)

7.1 kg

ycom �
1
M �

3

i�1
miyi �

m1y1 � m2y2 � m3y3

M

� 83 cm

�
(1.2 kg)(0) � (2.5 kg)(140 cm) � (3.4 kg)(70 cm)

7.1 kg

xcom �
1
M �

3

i�1
mixi �

m1x1 � m2x2 � m3x3

M

Sample Problem 9.01 com of three particles

Three particles of masses m1 � 1.2 kg, m2 � 2.5 kg, and
m3 � 3.4 kg form an equilateral triangle of edge length
a � 140 cm.Where is the center of mass of this system?

KEY IDEA

We are dealing with particles instead of an extended solid
body, so we can use Eq. 9-5 to locate their center of mass.
The particles are in the plane of the equilateral triangle, so
we need only the first two equations.

Calculations: We can simplify the calculations by choosing
the x and y axes so that one of the particles is located at the
origin and the x axis coincides with one of the triangle’s

Figure 9-3 Three particles form an equilateral triangle of edge
length a. The center of mass is located by the position vector .r:com

y

x0
50 100 150

50

100

150

ycom

xcomm1

m2

m3

rcom

a a 

0

This is the position
vector rcom for the
com (it points from
the origin to the com).

Additional examples, video, and practice available at WileyPLUS



218 CHAPTER 9 CENTER OF MASS AND LINEAR MOMENTUM

Center Location 
Plate of Mass of com Mass

P comP xP � ? mP

S comS xS � �R mS

C comC xC � 0 mC � mS � mP

Assume that mass mS of disk S is concentrated in a parti-
cle at xS � �R, and mass mP is concentrated in a particle
at xP (Fig. 9-4d). Next we use Eq. 9-2 to find the center of
mass xS�P of the two-particle system:

(9-12)

Next note that the combination of disk S and plate P is
composite plate C. Thus, the position xS�P of comS�P must
coincide with the position xC of comC, which is at the origin; so
xS�P � xC � 0. Substituting this into Eq. 9-12, we get

(9-13)

We can relate these masses to the face areas of S and P by
noting that

mass � density � volume
� density � thickness � area.

Then

Because the plate is uniform, the densities and thicknesses
are equal; we are left with

Substituting this and xS � �R into Eq. 9-13, we have

(Answer)xP � 1
3R.

�
pR2

p(2R)2 � pR2 �
1
3

.

mS

mP
�

areaS

areaP
�

areaS

areaC � areaS

mS

mP
�

densityS

densityP
�

thicknessS

thicknessP
�

areaS

areaP
.

xP � �xS
mS

mP
.

xS�P �
mSxS � mPxP

mS � mP
.

Sample Problem 9.02 com of plate with missing piece

This sample problem has lots of words to read, but they will
allow you to calculate a com using easy algebra instead of
challenging integral calculus. Figure 9-4a shows a uniform
metal plate P of radius 2R from which a disk of radius R has
been stamped out (removed) in an assembly line.The disk is
shown in Fig. 9-4b. Using the xy coordinate system shown,
locate the center of mass comP of the remaining plate.

KEY IDEAS

(1) Let us roughly locate the center of plate P by using sym-
metry. We note that the plate is symmetric about the x axis
(we get the portion below that axis by rotating the upper
portion about the axis). Thus, comP must be on the x axis.
The plate (with the disk removed) is not symmetric about
the y axis. However, because there is somewhat more mass
on the right of the y axis, comP must be somewhat to the
right of that axis. Thus, the location of comP should be
roughly as indicated in Fig. 9-4a.

(2) Plate P is an extended solid body, so in principle we
can use Eqs. 9-11 to find the actual coordinates of the center
of mass of plate P. Here we want the xy coordinates of the
center of mass because the plate is thin and uniform. If it
had any appreciable thickness, we would just say that the
center of mass is midway across the thickness. Still, using
Eqs. 9-11 would be challenging because we would need a
function for the shape of the plate with its hole, and then we
would need to integrate the function in two dimensions.

(3) Here is a much easier way: In working with centers
of mass, we can assume that the mass of a uniform object (as
we have here) is concentrated in a particle at the object’s
center of mass.Thus we can treat the object as a particle and
avoid any two-dimensional integration.

Calculations: First, put the stamped-out disk (call it disk S)
back into place (Fig. 9-4c) to form the original composite
plate (call it plate C). Because of its circular symmetry, the
center of mass comS for disk S is at the center of S, at x �
�R (as shown). Similarly, the center of mass comC for com-
posite plate C is at the center of C, at the origin (as shown).
We then have the following:

Additional examples, video, and practice available at WileyPLUS

Checkpoint 1
The figure shows a uniform square plate from which four identical
squares at the corners will be removed. (a) Where is the center of mass of
the plate originally? Where is it after the removal of (b) square 1; (c)
squares 1 and 2; (d) squares 1 and 3; (e) squares 1, 2, and 3; (f) all four
squares? Answer in terms of quadrants, axes, or points (without calcula-
tion, of course).

y

x

1 2

4 3
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A

The com of the composite
plate is the same as the
com of the two pieces.

Plate P

2R

R

y

x

y

y

x

comP

comC

comS

Disk S

Composite plate
C = S + P

(a)

(b)

(c)

(d) x
comPcomCcomS

Disk particle Plate particle

Assume the plate's
mass is concentrated
as a particle at the
plate's center of mass.

Here too, assume the
mass is concentrated
as a particle at the
center of mass.

Here too.

Here are those
three particles.

Figure 9-4 (a) Plate P is a metal plate of radius 2R, with a circular hole of radius R. The center of mass of P is at point comP. (b) Disk S.
(c) Disk S has been put back into place to form a composite plate C. The center of mass comS of disk S and the center of mass comC

of plate C are shown. (d) The center of mass comS�P of the combination of S and P coincides with comC, which is at x � 0.



Newton’s Second Law for a System of Particles
Now that we know how to locate the center of mass of a system of particles, we
discuss how external forces can move a center of mass. Let us start with a simple
system of two billiard balls.

If you roll a cue ball at a second billiard ball that is at rest, you expect that the
two-ball system will continue to have some forward motion after impact. You
would be surprised, for example, if both balls came back toward you or if both
moved to the right or to the left. You already have an intuitive sense that some-
thing continues to move forward.

What continues to move forward, its steady motion completely unaf-
fected by the collision, is the center of mass of the two-ball system. If you fo-
cus on this point — which is always halfway between these bodies because
they have identical masses — you can easily convince yourself by trial at a bil-
liard table that this is so. No matter whether the collision is glancing, head-on,
or somewhere in between, the center of mass continues to move forward, as if
the collision had never occurred. Let us look into this center-of-mass motion
in more detail.

Motion of a System’s com. To do so, we replace the pair of billiard balls with
a system of n particles of (possibly) different masses. We are interested not in the
individual motions of these particles but only in the motion of the center of mass
of the system. Although the center of mass is just a point, it moves like a particle
whose mass is equal to the total mass of the system; we can assign a position, a ve-
locity, and an acceleration to it. We state (and shall prove next) that the vector
equation that governs the motion of the center of mass of such a system of parti-
cles is

(system of particles). (9-14)

This equation is Newton’s second law for the motion of the center of mass of
a system of particles. Note that its form is the same as the form of the equation

F
:

net � Ma:com
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9-2 NEWTON’S SECOND LAW FOR A SYSTEM OF PARTICLES

After reading this module, you should be able to . . .

9.04 Apply Newton’s second law to a system of particles by re-
lating the net force (of the forces acting on the particles) to
the acceleration of the system’s center of mass.

9.05 Apply the constant-acceleration equations to the motion
of the individual particles in a system and to the motion of
the system’s center of mass.

9.06 Given the mass and velocity of the particles in a system,
calculate the velocity of the system’s center of mass.

9.07 Given the mass and acceleration of the particles in a
system, calculate the acceleration of the system’s center
of mass.

9.08 Given the position of a system’s center of mass as a func-
tion of time, determine the velocity of the center of mass.

9.09 Given the velocity of a system’s center of mass as a
function of time, determine the acceleration of the center
of mass.

9.10 Calculate the change in the velocity of a com by integrat-
ing the com’s acceleration function with respect to time.

9.11 Calculate a com’s displacement by integrating the
com’s velocity function with respect to time.

9.12 When the particles in a two-particle system move with-
out the system’s com moving, relate the displacements of
the particles and the velocities of the particles.

● The motion of the center of mass of any system of particles
is governed by Newton’s second law for a system of parti-
cles, which is

.F
:

net � M a:com

Here is the net force of all the external forces acting on
the system, M is the total mass of the system, and is the
acceleration of the system’s center of mass.

a:com

F
:

net

Learning Objectives

Key Idea



for the motion of a single particle. However, the three quantities that
appear in Eq. 9-14 must be evaluated with some care:

1. is the net force of all external forces that act on the system. Forces on one
part of the system from another part of the system (internal forces) are not in-
cluded in Eq. 9-14.

2. M is the total mass of the system. We assume that no mass enters or leaves the
system as it moves, so that M remains constant. The system is said to be closed.

3. is the acceleration of the center of mass of the system. Equation 9-14 gives
no information about the acceleration of any other point of the system.

Equation 9-14 is equivalent to three equations involving the components of
and along the three coordinate axes.These equations are

Fnet, x � Macom, x Fnet, y � Macom, y Fnet, z � Macom, z. (9-15)

Billiard Balls. Now we can go back and examine the behavior of the billiard
balls. Once the cue ball has begun to roll, no net external force acts on the (two-
ball) system. Thus, because � 0, Eq. 9-14 tells us that � 0 also. Because
acceleration is the rate of change of velocity, we conclude that the velocity of the
center of mass of the system of two balls does not change.When the two balls col-
lide, the forces that come into play are internal forces, on one ball from the other.
Such forces do not contribute to the net force , which remains zero. Thus, the
center of mass of the system, which was moving forward before the collision,
must continue to move forward after the collision, with the same speed and in the
same direction.

Solid Body. Equation 9-14 applies not only to a system of particles but also
to a solid body, such as the bat of Fig. 9-1b. In that case, M in Eq. 9-14 is the mass
of the bat and is the gravitational force on the bat. Equation 9-14 then tells us
that In other words, the center of mass of the bat moves as if the bat
were a single particle of mass M, with force acting on it.

Exploding Bodies. Figure 9-5 shows another interesting case. Suppose that at
a fireworks display, a rocket is launched on a parabolic path. At a certain point, it
explodes into fragments. If the explosion had not occurred, the rocket would have
continued along the trajectory shown in the figure. The forces of the explosion are
internal to the system (at first the system is just the rocket, and later it is its frag-
ments); that is, they are forces on parts of the system from other parts. If we ignore
air drag, the net external force acting on the system is the gravitational force on
the system, regardless of whether the rocket explodes. Thus, from Eq. 9-14, the ac-
celeration of the center of mass of the fragments (while they are in flight) re-
mains equal to This means that the center of mass of the fragments follows the
same parabolic trajectory that the rocket would have followed had it not exploded.

Ballet Leap. When a ballet dancer leaps across the stage in a grand jeté, she
raises her arms and stretches her legs out horizontally as soon as her feet leave the

g:.
a:com

F
:

net

F
:

g

a:com � g:.
F
:

net

F
:

net

a:comF
:

net

a:comF
:

net

a:com

F
:

net

(Fnet
:

� ma:)
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Figure 9-5 A fireworks rocket explodes in
flight. In the absence of air drag, the center
of mass of the fragments would continue to
follow the original parabolic path, until
fragments began to hit the ground.

The internal forces of the
explosion cannot change
the path of the com.



stage (Fig. 9-6). These actions shift her center of mass upward through her body.
Although the shifting center of mass faithfully follows a parabolic path across the
stage, its movement relative to the body decreases the height that is attained by her
head and torso, relative to that of a normal jump.The result is that the head and torso
follow a nearly horizontal path,giving an illusion that the dancer is floating.

Proof of Equation 9-14
Now let us prove this important equation. From Eq. 9-8 we have, for a system of n
particles,

(9-16)

in which M is the system’s total mass and is the vector locating the position of
the system’s center of mass.

Differentiating Eq. 9-16 with respect to time gives

(9-17)

Here is the velocity of the ith particle, and is the
velocity of the center of mass.

Differentiating Eq. 9-17 with respect to time leads to

(9-18)

Here is the acceleration of the ith particle, and is
the acceleration of the center of mass. Although the center of mass is just a geo-
metrical point, it has a position, a velocity, and an acceleration, as if it were a particle.

From Newton’s second law, is equal to the resultant force that acts on
the ith particle.Thus, we can rewrite Eq. 9-18 as

(9-19)

Among the forces that contribute to the right side of Eq. 9-19 will be forces that
the particles of the system exert on each other (internal forces) and forces
exerted on the particles from outside the system (external forces). By Newton’s
third law, the internal forces form third-law force pairs and cancel out in the sum
that appears on the right side of Eq. 9-19. What remains is the vector sum of
all the external forces that act on the system. Equation 9-19 then reduces to
Eq. 9-14, the relation that we set out to prove.

Ma:com � F1
:

� F2
:

� F3
:

� 
 
 
 � Fn
:

.

Fi
:

miai
:

a:com (� d v:com /dt)a:i (� d v:i/dt)

Ma:com � m1a1
: � m2a2

: � m3a3
: � 
 
 
 � mnan
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: 

(� d ri
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: � 
 
 
 � mnvn

: .

rcom
:

M r:com � m1r1
: � m2r2

: � m3r3
: � 
 
 
 � mnrn

: ,

222 CHAPTER 9 CENTER OF MASS AND LINEAR MOMENTUM

Path of head 

Path of center of mass 

Figure 9-6 A grand jeté. (Based on The Physics of Dance, by Kenneth Laws, Schirmer
Books, 1984.)
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Checkpoint 2
Two skaters on frictionless ice hold opposite ends of a pole of negligible mass.An axis
runs along it, with the origin at the center of mass of the two-skater system. One skater,
Fred, weighs twice as much as the other skater, Ethel.Where do the skaters meet if (a)
Fred pulls hand over hand along the pole so as to draw himself to Ethel, (b) Ethel pulls
hand over hand to draw herself to Fred, and (c) both skaters pull hand over hand?

Sample Problem 9.03 Motion of the com of three particles

If the particles in a system all move together, the com moves
with them—no trouble there. But what happens when they
move in different directions with different accelerations?
Here is an example.

The three particles in Fig. 9-7a are initially at rest. Each
experiences an external force due to bodies outside the
three-particle system. The directions are indicated, and the
magnitudes are F1 � 6.0 N, F2 � 12 N, and F3 � 14 N. What
is the acceleration of the center of mass of the system, and in
what direction does it move?

KEY IDEAS

The position of the center of mass is marked by a dot in the
figure. We can treat the center of mass as if it were a real
particle,with a mass equal to the system’s total mass M � 16 kg.
We can also treat the three external forces as if they act at the
center of mass (Fig. 9-7b).

Calculations: We can now apply Newton’s second law
to the center of mass, writing

(9-20)

or

so (9-21)

Equation 9-20 tells us that the acceleration of the 
center of mass is in the same direction as the net external force

on the system (Fig. 9-7b). Because the particles are ini-
tially at rest, the center of mass must also be at rest. As the
center of mass then begins to accelerate, it must move off in
the common direction of and 

We can evaluate the right side of Eq. 9-21 directly on
a vector-capable calculator, or we can rewrite Eq. 9-21 in
component form, find the components of and then find

Along the x axis, we have

�
�6.0 N � (12 N) cos 45� � 14 N

16 kg
� 1.03 m/s2.

acom, x �
F 1x � F 2x � F 3x

M

a:com.
a:com,

F
:

net.a:com

F
:

net

a:com

a:com �
F1
:

� F2
:

� F3
:

M
.

F1
:

� F2
:

� F3
:

� Ma:com

F
:

net � Ma:com

(F
:

net � ma:)

Figure 9-7 (a) Three particles, initially at rest in the positions shown,
are acted on by the external forces shown. The center of mass (com)
of the system is marked. (b) The forces are now transferred to the
center of mass of the system, which behaves like a particle with a
mass M equal to the total mass of the system. The net external force

and the acceleration of the center of mass are shown.a:comF
:

net
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acom

The com of the system
will move as if all the
mass were there and
the net force acted there.

Additional examples, video, and practice available at WileyPLUS

Along the y axis, we have

From these components, we find that has the magnitude

(Answer)
and the angle (from the positive direction of the x axis)

(Answer)� � tan�1
acom, y

acom, x
� 27�.

� 1.16 m/s2 � 1.2 m/s2

acom � 2(acom, x)2 � (acom, y)2

a:com

�
0 � (12 N) sin 45� � 0

16 kg
� 0.530 m/s2.

acom, y �
F 1y � F 2y � F 3y

M



Linear Momentum
Here we discuss only a single particle instead of a system of particles, in order to
define two important quantities. Then we shall extend those definitions to sys-
tems of many particles.

The first definition concerns a familiar word—momentum—that has several
meanings in everyday language but only a single precise meaning in physics and
engineering. The linear momentum of a particle is a vector quantity that is
defined as

(linear momentum of a particle), (9-22)

in which m is the mass of the particle and is its velocity. (The adjective linear is of-
ten dropped, but it serves to distinguish from angular momentum, which is intro-
duced in Chapter 11 and which is associated with rotation.) Since m is always a
positive scalar quantity, Eq. 9-22 tells us that and have the same direction. Fromv:p:

p:
v:

p: � mv:

p:
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9-3 LINEAR MOMENTUM

After reading this module, you should be able to . . .

9.13 Identify that momentum is a vector quantity and thus has
both magnitude and direction and also components.

9.14 Calculate the (linear) momentum of a particle as the
product of the particle’s mass and velocity.

9.15 Calculate the change in momentum (magnitude and di-
rection) when a particle changes its speed and direction of
travel.

9.16 Apply the relationship between a particle’s momentum
and the (net) force acting on the particle.

9.17 Calculate the momentum of a system of particles as the
product of the system’s total mass and its center-of-mass
velocity.

9.18 Apply the relationship between a system’s center-of-
mass momentum and the net force acting on the system.

● For a single particle, we define a quantity called its linear
momentum as

,

which is a vector quantity that has the same direction as the
particle’s velocity. We can write Newton’s second law in

p: � mv:

p: terms of this momentum:

● For a system of particles these relations become

and F
:

net �
dP

:

dt
.P

:
� Mv:com

F
:

net �
d p:

dt
.

Learning Objectives

Key Ideas

The time rate of change of the momentum of a particle is equal to the net force 
acting on the particle and is in the direction of that force.

In equation form this becomes

(9-23)

In words, Eq. 9-23 says that the net external force on a particle changes the
particle’s linear momentum Conversely, the linear momentum can be
changed only by a net external force. If there is no net external force, cannot
change. As we shall see in Module 9-5, this last fact can be an extremely power-
ful tool in solving problems.

p:
p:.

F
:

net

F
:

net �
dp:

dt
.

Eq. 9-22, the SI unit for momentum is the kilogram-meter per second (kg 
m/s).
Force and Momentum. Newton expressed his second law of motion in terms

of momentum:



Manipulating Eq. 9-23 by substituting for from Eq. 9-22 gives, for constant
mass m,

Thus, the relations and are equivalent expressions of
Newton’s second law of motion for a particle.

F
:

net � ma:F
:

net � dp:/dt

F
:

net �
dp:

dt
�

d
dt

 (mv:) � m
dv:

dt
� ma:.

p:
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Checkpoint 3
The figure gives the magnitude p of the linear mo-
mentum versus time t for a particle moving along
an axis.A force directed along the axis acts on the
particle.(a) Rank the four regions indicated ac-
cording to the magnitude of the force,greatest
first. (b) In which region is the particle slowing?

The Linear Momentum of a System of Particles
Let’s extend the definition of linear momentum to a system of particles. Consider
a system of n particles, each with its own mass, velocity, and linear momentum.
The particles may interact with each other, and external forces may act on them.
The system as a whole has a total linear momentum which is defined to be the
vector sum of the individual particles’ linear momenta.Thus,

(9-24)

If we compare this equation with Eq. 9-17, we see that

(linear momentum, system of particles), (9-25)

which is another way to define the linear momentum of a system of particles:

P
:

� Mv:com

� m1v:1 � m2v:2 � m3v:3 � 
 
 
 � mnv:n.

P
:

� p:1 � p:2 � p:3 � 
 
 
 � p:n

P
:

,

The linear momentum of a system of particles is equal to the product of the total
mass M of the system and the velocity of the center of mass.

Force and Momentum. If we take the time derivative of Eq. 9-25 (the veloc-
ity can change but not the mass), we find

(9-26)

Comparing Eqs. 9-14 and 9-26 allows us to write Newton’s second law for a sys-
tem of particles in the equivalent form

(system of particles), (9-27)

where is the net external force acting on the system.This equation is the gen-
eralization of the single-particle equation to a system of many 
particles. In words, the equation says that the net external force on a system
of particles changes the linear momentum of the system. Conversely, the linear
momentum can be changed only by a net external force. If there is no net exter-
nal force, cannot change. Again, this fact gives us an extremely powerful tool
for solving problems.

P
:

P
:

F
:

net

F
:

net � dp:/dt
F
:

net

F
:

net �
dP

:

dt

dP
:

dt
� M

dv:com

dt
� Ma:com.

p

t

1

2

3

4
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9-4 COLLISION AND IMPULSE

After reading this module, you should be able to . . .

9.19 Identify that impulse is a vector quantity and thus has both
magnitude and direction and also components.

9.20 Apply the relationship between impulse and momentum
change.

9.21 Apply the relationship between impulse, average force,
and the time interval taken by the impulse.

9.22 Apply the constant-acceleration equations to relate im-
pulse to average force.

9.23 Given force as a function of time, calculate the impulse (and
thus also the momentum change) by integrating the function.

9.24 Given a graph of force versus time, calculate the im-
pulse (and thus also the momentum change) by graphical
integration.

9.25 In a continuous series of collisions by projectiles, calcu-
late the average force on the target by relating it to the rate
at which mass collides and to the velocity change experi-
enced by each projectile.

● Applying Newton’s second law in momentum form to a
particle-like body involved in a collision leads to the
impulse–linear momentum theorem:

,

where is the change in the body’s linear momen-p:f � p:i � �p:
p:f � p:i � �p: � J

:

● When a steady stream of bodies, each with mass m and
speed v, collides with a body whose position is fixed, the aver-
age force on the fixed body is

where n/�t is the rate at which the bodies collide with the
fixed body, and �v is the change in velocity of each colliding
body. This average force can also be written as

where �m/�t is the rate at which mass collides with the fixed
body. The change in velocity is �v � �v if the bodies stop
upon impact and �v � �2v if they bounce directly backward
with no change in their speed.

Favg � �
�m
�t

�v,

Favg � �
n
�t

�p � �
n
�t

m �v,

Learning Objectives

Key Ideas

tum, and is the impulse due to the force exerted on the
body by the other body in the collision:

● If Favg is the average magnitude of during the collisionF
:

(t)

J
:

� �tf

ti

F
:

(t) dt.

F
:

(t)J
:

and �t is the duration of the collision, then for one-dimensional
motion

J � Favg �t.

Collision and Impulse
The momentum of any particle-like body cannot change unless a net
external force changes it. For example, we could push on the body to change its
momentum. More dramatically, we could arrange for the body to collide with a
baseball bat. In such a collision (or crash), the external force on the body is brief,
has large magnitude, and suddenly changes the body’s momentum. Collisions oc-
cur commonly in our world, but before we get to them, we need to consider a sim-
ple collision in which a moving particle-like body (a projectile) collides with some
other body (a target).

Single Collision
Let the projectile be a ball and the target be a bat.The collision is brief, and the ball
experiences a force that is great enough to slow, stop, or even reverse its motion.
Figure 9-8 depicts the collision at one instant. The ball experiences a force that
varies during the collision and changes the linear momentum of the ball. Thatp:

F
:
(t)

p:

The collision of a ball with a bat collapses
part of the ball.
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change is related to the force by Newton’s second law written in the form 
By rearranging this second-law expression, we see that, in time interval dt, the
change in the ball’s momentum is

(9-28)dp: � F
:

(t) dt.

F
:

� dp:/dt.



We can find the net change in the ball’s momentum due to the collision if we inte-
grate both sides of Eq. 9-28 from a time ti just before the collision to a time tf just
after the collision:

(9-29)

The left side of this equation gives us the change in momentum:
The right side, which is a measure of both the magnitude and the duration of the
collision force, is called the impulse of the collision:

(impulse defined). (9-30)

Thus, the change in an object’s momentum is equal to the impulse on the object:

(linear momentum–impulse theorem). (9-31)

This expression can also be written in the vector form

(9-32)

and in such component forms as

�px � Jx (9-33)

and (9-34)

Integrating the Force. If we have a function for we can evaluate (and
thus the change in momentum) by integrating the function. If we have a plot of 
versus time t, we can evaluate by finding the area between the curve and the t
axis, such as in Fig. 9-9a. In many situations we do not know how the force varies
with time but we do know the average magnitude Favg of the force and the duration
�t (� tf � ti) of the collision. Then we can write the magnitude of the impulse as

J � Favg �t. (9-35)

The average force is plotted versus time as in Fig. 9-9b. The area under that curve
is equal to the area under the curve for the actual force F(t) in Fig. 9-9a because
both areas are equal to impulse magnitude J.

Instead of the ball, we could have focused on the bat in Fig. 9-8. At any
instant, Newton’s third law tells us that the force on the bat has the same
magnitude but the opposite direction as the force on the ball. From Eq. 9-30, this
means that the impulse on the bat has the same magnitude but the opposite
direction as the impulse on the ball.

J
:

F
:

J
:

F
:

(t),

pfx � pix � �tf

ti

F x dt.

p:f � p:i � J
:

�p: � J
:

J
:

� �tf

ti

F
:

(t) dt

J
:

p:f � p:i � �p:.

�tf

ti

dp: � �tf

ti

F
:
(t) dt.
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Figure 9-8 Force acts on a ball as the
ball and a bat collide.

F
:

(t)

x

Bat Ball

F (t)

Figure 9-9 (a) The curve shows the magni-
tude of the time-varying force F(t) that acts
on the ball in the collision of Fig. 9-8. The
area under the curve is equal to the magni-
tude of the impulse on the ball in the col-
lision. (b) The height of the rectangle repre-
sents the average force Favg acting on the
ball over the time interval �t.The area within
the rectangle is equal to the area under the
curve in (a) and thus is also equal to the
magnitude of the impulse in the collision.J

:

J
:

ti

F

J
F(t)

tf
Δt

Δt

t

ti

F

Favg

tf

t

J

(a)

(b)

The impulse in the collision
is equal to the area under
the curve.

The average force gives
the same area under the
curve.

Checkpoint 4
A paratrooper whose chute fails to open lands in snow; he is hurt slightly. Had he
landed on bare ground, the stopping time would have been 10 times shorter and the
collision lethal. Does the presence of the snow increase, decrease, or leave unchanged
the values of (a) the paratrooper’s change in momentum, (b) the impulse stopping the
paratrooper, and (c) the force stopping the paratrooper?

Series of Collisions
Now let’s consider the force on a body when it undergoes a series of identical, re-
peated collisions. For example, as a prank, we might adjust one of those machines
that fire tennis balls to fire them at a rapid rate directly at a wall. Each collision
would produce a force on the wall, but that is not the force we are seeking. We



want the average force Favg on the wall during the bombardment—that is, the av-
erage force during a large number of collisions.

In Fig. 9-10, a steady stream of projectile bodies, with identical mass m and
linear momenta moves along an x axis and collides with a target body that ismv:,
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Figure 9-10 A steady stream of projectiles,
with identical linear momenta, collides
with a target, which is fixed in place. The
average force Favg on the target is to the
right and has a magnitude that depends on
the rate at which the projectiles collide
with the target or, equivalently, the rate at
which mass collides with the target.

xTarget 

v

Projectiles

fixed in place. Let n be the number of projectiles that collide in a time interval �t.
Because the motion is along only the x axis, we can use the components of the
momenta along that axis. Thus, each projectile has initial momentum mv and
undergoes a change �p in linear momentum because of the collision. The total
change in linear momentum for n projectiles during interval �t is n �p. The
resulting impulse on the target during �t is along the x axis and has the same
magnitude of n �p but is in the opposite direction. We can write this relation in
component form as

J � �n �p, (9-36)

where the minus sign indicates that J and �p have opposite directions.
Average Force. By rearranging Eq. 9-35 and substituting Eq. 9-36, we find

the average force Favg acting on the target during the collisions:

(9-37)

This equation gives us Favg in terms of n/�t, the rate at which the projectiles
collide with the target, and �v, the change in the velocity of those projectiles.

Velocity Change. If the projectiles stop upon impact, then in Eq. 9-37 we can
substitute, for �v,

�v � vf � vi � 0 � v � �v, (9-38)

where vi (� v) and vf (� 0) are the velocities before and after the collision,
respectively. If, instead, the projectiles bounce (rebound) directly backward from
the target with no change in speed, then vf � �v and we can substitute

�v � vf � vi � �v � v � �2v. (9-39)

In time interval �t, an amount of mass �m � nm collides with the target.
With this result, we can rewrite Eq. 9-37 as

(9-40)

This equation gives the average force Favg in terms of �m/�t, the rate at which
mass collides with the target. Here again we can substitute for �v from Eq. 9-38
or 9-39 depending on what the projectiles do.

F avg � �
�m
�t

�v.

F avg �
J

�t
� �

n
�t

�p � �
n
�t

m �v.

J
:

Checkpoint 5
The figure shows an overhead view of a ball bouncing from a vertical wall without any
change in its speed. Consider the change in the ball’s linear momentum. (a) Is �px

positive, negative, or zero? (b) Is �py positive, negative, or zero? (c) What is the direc-
tion of ?�p:

�p:

θ θ 

y

x
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Impulse: The impulse is then

(Answer)

which means the impulse magnitude is

The angle of is given by

(Answer)

which a calculator evaluates as 75.4�. Recall that the physi-
cally correct result of an inverse tangent might be the
displayed answer plus 180�. We can tell which is correct here
by drawing the components of (Fig. 9-11c). We find that u
is actually 75.4� � 180� � 255.4�, which we can write as

u � �105�. (Answer)

(b) The collision lasts for 14 ms. What is the magnitude of
the average force on the driver during the collision?

KEY IDEA

From Eq. 9-35 (J � Favg �t), the magnitude Favg of the aver-
age force is the ratio of the impulse magnitude J to the dura-
tion �t of the collision.

Calculations: We have

. (Answer)

Using F � ma with m � 80 kg, you can show that the magni-
tude of the driver’s average acceleration during the collision
is about 3.22 � 103 m/s2 � 329g, which is fatal.

Surviving: Mechanical engineers attempt to reduce the
chances of a fatality by designing and building racetrack
walls with more “give,” so that a collision lasts longer. For
example, if the collision here lasted 10 times longer and the
other data remained the same, the magnitudes of the aver-
age force and average acceleration would be 10 times less
and probably survivable.

� 2.583 � 105 N � 2.6 � 105 N

F avg �
J

�t
�

3616 kg 
m/s
0.014 s

J
:

u � tan�1
Jy

Jx
,

J
:

J � 2J x
2 � J y

2 � 3616 kg 
m/s � 3600 kg 
m/s.

J
:

� (�910î � 3500 ĵ) kg 
m/s,

Sample Problem 9.04 Two-dimensional impulse, race car–wall collision

Figure 9-11a is an overhead view of
the path taken by a race car driver as his car collides with the
racetrack wall. Just before the collision, he is traveling at
speed vi � 70 m/s along a straight line at 30� from the wall.
Just after the collision, he is traveling at speed vf � 50 m/s
along a straight line at 10� from the wall. His mass m is 80 kg.

(a) What is the impulse on the driver due to the collision?

KEY IDEAS

We can treat the driver as a particle-like body and thus apply
the physics of this module. However, we cannot calculate 
directly from Eq. 9-30 because we do not know anything about
the force on the driver during the collision. That is, we do
not have a function of or a plot for it and thus cannot
integrate to find . However, we can find from the change in
the driver’s linear momentum via Eq.9-32 .

Calculations: Figure 9-11b shows the driver’s momentum p:i

( J
:

� p:f � p:i)p:
J
:

J
:

F
:

(t)
F
:

(t)

J
:

J
:

Race car–wall collision.

Wall 

x

y

30° 
10° 

30° 

Path

(a)

x

y

10° 

(b)

pi

pf –105°
x

y

(c)

Jy

Jx

J

The impulse on the car
is equal to the change
in the momentum.

The collision
changes the 
momentum.

Figure 9-11 (a) Overhead
view of the path taken by a
race car and its driver as the
car slams into the racetrack
wall. (b) The initial momen-
tum and final momentum

of the driver. (c) The
impulse on the driver
during the collision.

J
:

p:
f

p:i

Additional examples, video, and practice available at WileyPLUS

before the collision (at angle 30� from the positive x direction)
and his momentum after the collision (at angle 10�). From
Eqs. 9-32 and 9-22 , we can write

(9-41)

We could evaluate the right side of this equation directly on
a vector-capable calculator because we know m is 80 kg,
is 50 m/s at �10�, and is 70 m/s at 30�. Instead, here we
evaluate Eq. 9-41 in component form.

x component: Along the x axis we have

Jx � m(vfx � vix)

� (80 kg)[(50 m/s) cos(�10�) � (70 m/s) cos 30�]

� �910 kg 
m/s.

y component: Along the y axis,

Jy � m(vfy � viy)

� (80 kg)[(50 m/s) sin(�10�) � (70 m/s) sin 30�]

� �3495 kg 
m/s � �3500 kg 
m/s.

v:i

v:f

J
:

� p:f � p:i � mv:f � mvi
: � m(v:f � v:i).

mv:)( p: �
�p:f



Conservation of Linear Momentum
Suppose that the net external force (and thus the net impulse ) acting on a
system of particles is zero (the system is isolated) and that no particles leave or
enter the system (the system is closed). Putting in Eq. 9-27 then yields

, which means that

(closed, isolated system). (9-42)

In words,

P
:

� constant

dP
:

/dt � 0
F
:

net � 0

J
:

F
:

net
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9-5 CONSERVATION OF LINEAR MOMENTUM

After reading this module, you should be able to . . .

9.26 For an isolated system of particles, apply the conservation
of linear momenta to relate the initial momenta of the particles
to their momenta at a later instant.

9.27 Identify that the conservation of linear momentum can be
done along an individual axis by using components along
that axis, provided that there is no net external force com-
ponent along that axis.

● If a system is closed and isolated so that no net external
force acts on it, then the linear momentum must be constant
even if there are internal changes:

(closed, isolated system).P
:

� constant

P
:

● This conservation of linear momentum can also be written
in terms of the system’s initial momentum and its momentum
at some later instant:

(closed, isolated system),P
:

i � P
:

f

Learning Objectives

Key Ideas

If no net external force acts on a system of particles, the total linear momentum 
of the system cannot change.

P
:

This result is called the law of conservation of linear momentum and is an extremely
powerful tool in solving problems. In the homework we usually write the law as

(closed, isolated system). (9-43)

In words, this equation says that, for a closed, isolated system,

.

Caution: Momentum should not be confused with energy. In the sample problems
of this module, momentum is conserved but energy is definitely not.

Equations 9-42 and 9-43 are vector equations and, as such, each is equivalent
to three equations corresponding to the conservation of linear momentum in
three mutually perpendicular directions as in, say, an xyz coordinate system.
Depending on the forces acting on a system, linear momentum might be
conserved in one or two directions but not in all directions. However,

�total linear momentum
at some initial time ti

� � �total linear momentum
at some later time tf �

P
:

i � P
:

f

If the component of the net external force on a closed system is zero along an axis, then
the component of the linear momentum of the system along that axis cannot change.

In a homework problem, how can you know if linear momentum can be con-
served along, say, an x axis? Check the force components along that axis. If the net of
any such components is zero, then the conservation applies.As an example, suppose
that you toss a grapefruit across a room. During its flight, the only external force act-
ing on the grapefruit (which we take as the system) is the gravitational force ,
which is directed vertically downward. Thus, the vertical component of the linear

F
:

g



momentum of the grapefruit changes, but since no horizontal external force acts on
the grapefruit, the horizontal component of the linear momentum cannot change.

Note that we focus on the external forces acting on a closed system.
Although internal forces can change the linear momentum of portions of the sys-
tem, they cannot change the total linear momentum of the entire system. For ex-
ample, there are plenty of forces acting between the organs of your body, but they
do not propel you across the room (thankfully).

The sample problems in this module involve explosions that are either one-
dimensional (meaning that the motions before and after the explosion are along
a single axis) or two-dimensional (meaning that they are in a plane containing
two axes). In the following modules we consider collisions.

2319-5 CONSERVATION OF LINEAR MOMENTUM

We can relate the  vMS to the known velocities with

.

In symbols, this gives us
vHS � vrel � vMS (9-47)

or vMS � vHS � vrel.

Substituting this expression for vMS into Eq. 9-46, and then
substituting Eqs. 9-45 and 9-46 into Eq. 9-44, we find

Mvi � 0.20M(vHS � vrel) � 0.80MvHS,
which gives us

vHS � vi � 0.20vrel,
or vHS � 2100 km/h � (0.20)(500 km/h)

� 2200 km/h. (Answer)

� velocity of
hauler relative

to Sun � � � velocity of
hauler relative

to module � � � velocity of
module relative

to Sun �

Sample Problem 9.05 One-dimensional explosion, relative velocity, space hauler

One-dimensional explosion: Figure 9-12a shows a space hauler
and cargo module, of total mass M, traveling along an x axis in
deep space. They have an initial velocity of magnitude 2100
km/h relative to the Sun. With a small explosion, the hauler
ejects the cargo module, of mass 0.20M (Fig. 9-12b).The hauler
then travels 500 km/h faster than the module along the x axis;
that is, the relative speed vrel between the hauler and the mod-
ule is 500 km/h.What then is the velocity of the hauler rela-
tive to the Sun?

KEY IDEA

Because the hauler–module system is closed and isolated,
its total linear momentum is conserved; that is,

, (9-44)

where the subscripts i and f refer to values before and after
the ejection, respectively. (We need to be careful here:
Although the momentum of the system does not change, the
momenta of the hauler and module certainly do.)

Calculations: Because the motion is along a single axis,we can
write momenta and velocities in terms of their x components,
using a sign to indicate direction. Before the ejection, we have

Pi � Mvi. (9-45)

Let vMS be the velocity of the ejected module relative to the
Sun.The total linear momentum of the system after the ejec-
tion is then

Pf � (0.20M)vMS � (0.80M)vHS, (9-46)

where the first term on the right is the linear momentum of
the module and the second term is that of the hauler.

P
:

i � P
:

f

v:HS

v:i

Figure 9-12 (a) A space hauler, with a cargo module, moving at initial
velocity (b) The hauler has ejected the cargo module. Now the
velocities relative to the Sun are for the module and for the
hauler.

v:HSv:MS

v:i.

(a) (b)

Cargo module 

Hauler
0.20M

vMS vHSvi

0.80M

x x

The explosive separation can change the momentum
of the parts but not the momentum of the system.

Additional examples, video, and practice available at WileyPLUS

Checkpoint 6
An initially stationary device lying on a frictionless floor explodes into two pieces, which
then slide across the floor, one of them in the positive x direction. (a) What is the sum of
the momenta of the two pieces after the explosion? (b) Can the second piece move at an
angle to the x axis? (c) What is the direction of the momentum of the second piece?
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Calculations: Linear momentum is also conserved along
the x axis because there is no net external force acting on
the coconut and pieces along that axis.Thus we have

Pix � Pfx, (9-49)

where Pix � 0 because the coconut is initially at rest. To
get Pfx, we find the x components of the final momenta,
using the fact that piece A must have a mass of 0.50M
(� M � 0.20M � 0.30M):

pfA,x � �0.50MvfA,

pfB,x � 0.20MvfB,x � 0.20MvfB cos 50�,

pfC,x � 0.30MvfC,x � 0.30MvfC cos 80�.

Equation 9-49 for the conservation of momentum along the
x axis can now be written as

Pix � Pfx � pfA,x � pfB,x � pfC,x.

Then, with vfC � 5.0 m/s and vfB � 9.64 m/s, we have

0 � �0.50MvfA � 0.20M(9.64 m/s) cos 50�

� 0.30M(5.0 m/s) cos 80�,

from which we find

vfA � 3.0 m/s. (Answer)

Sample Problem 9.06 Two-dimensional explosion, momentum, coconut

Two-dimensional explosion: A firecracker placed inside a
coconut of mass M, initially at rest on a frictionless floor,
blows the coconut into three pieces that slide across the floor.
An overhead view is shown in Fig. 9-13a. Piece C, with mass
0.30M, has final speed vfC � 5.0 m/s.

(a) What is the speed of piece B, with mass 0.20M?

KEY IDEA

First we need to see whether linear momentum is con-
served. We note that (1) the coconut and its pieces form a
closed system, (2) the explosion forces are internal to that
system, and (3) no net external force acts on the system.
Therefore, the linear momentum of the system is conserved.
(We need to be careful here: Although the momentum of
the system does not change, the momenta of the pieces cer-
tainly do.)

Calculations: To get started, we superimpose an xy coordinate
system as shown in Fig. 9-13b, with the negative direction of the
x axis coinciding with the direction of The x axis is at 80�v:fA.

Additional examples, video, and practice available at WileyPLUS

Figure 9-13 Three pieces of an
exploded coconut move off in
three directions along a
frictionless floor. (a) An over-
head view of the event. (b) The
same with a two-dimensional
axis system imposed.

with the direction of and 50� with the direction of .
Linear momentum is conserved separately along each

axis. Let’s use the y axis and write

Piy � Pfy, (9-48)

where subscript i refers to the initial value (before the ex-
plosion), and subscript y refers to the y component of 
or .

The component Piy of the initial linear momentum is
zero, because the coconut is initially at rest. To get an ex-
pression for Pfy, we find the y component of the final linear
momentum of each piece, using the y-component version of
Eq. 9-22 ( py � mvy):

pfA,y � 0,

pfB,y � �0.20MvfB,y � �0.20MvfB sin 50�,

pfC,y � 0.30MvfC,y � 0.30MvfC sin 80�.

(Note that pfA,y � 0 because of our nice choice of axes.)
Equation 9-48 can now be written as

Piy � Pfy � pfA,y � pfB,y � pfC,y.

Then, with vfC � 5.0 m/s, we have

0 � 0 � 0.20MvfB sin 50� � (0.30M)(5.0 m/s) sin 80�,

from which we find

vfB � 9.64 m/s � 9.6 m/s. (Answer)

(b) What is the speed of piece A?

Pf
:

Pi
:

v:f Bv:f C

A

B

C

vfB

vfCvfA

100°

130°

(a)

B

C

vfB

vfC
vfA

80°

(b)

x

y

50°

A

The explosive separation
can change the momentum
of the parts but not the
momentum of the system.



Momentum and Kinetic Energy in Collisions
In Module 9-4, we considered the collision of two particle-like bodies but focused
on only one of the bodies at a time. For the next several modules we switch our
focus to the system itself, with the assumption that the system is closed and iso-
lated. In Module 9-5, we discussed a rule about such a system: The total linear
momentum of the system cannot change because there is no net external force
to change it. This is a very powerful rule because it can allow us to determine the
results of a collision without knowing the details of the collision (such as how
much damage is done).

We shall also be interested in the total kinetic energy of a system of two col-
liding bodies. If that total happens to be unchanged by the collision, then the
kinetic energy of the system is conserved (it is the same before and after the
collision). Such a collision is called an elastic collision. In everyday collisions of
common bodies, such as two cars or a ball and a bat, some energy is always trans-
ferred from kinetic energy to other forms of energy, such as thermal energy or
energy of sound. Thus, the kinetic energy of the system is not conserved. Such a
collision is called an inelastic collision.

However, in some situations, we can approximate a collision of common bod-
ies as elastic. Suppose that you drop a Superball onto a hard floor. If the collision
between the ball and floor (or Earth) were elastic, the ball would lose no kinetic
energy because of the collision and would rebound to its original height.
However, the actual rebound height is somewhat short, showing that at least
some kinetic energy is lost in the collision and thus that the collision is somewhat
inelastic. Still, we might choose to neglect that small loss of kinetic energy to ap-
proximate the collision as elastic.

The inelastic collision of two bodies always involves a loss in the kinetic
energy of the system. The greatest loss occurs if the bodies stick together, in
which case the collision is called a completely inelastic collision. The collision of a
baseball and a bat is inelastic. However, the collision of a wet putty ball and a bat
is completely inelastic because the putty sticks to the bat.

P
:
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After reading this module, you should be able to . . .

9.28 Distinguish between elastic collisions, inelastic collisions,
and completely inelastic collisions.

9.29 Identify a one-dimensional collision as one where the ob-
jects move along a single axis, both before and after the
collision.

9.30 Apply the conservation of momentum for an isolated
one-dimensional collision to relate the initial momenta of
the objects to their momenta after the collision.

9.31 Identify that in an isolated system, the momentum and
velocity of the center of mass are not changed even if the
objects collide.

● In an inelastic collision of two bodies, the kinetic energy of
the two-body system is not conserved. If the system is closed
and isolated, the total linear momentum of the system must
be conserved, which we can write in vector form as

,

where subscripts i and f refer to values just before and just
after the collision, respectively.

● If the motion of the bodies is along a single axis, the collision
is one-dimensional and we can write the equation in terms of

p:1i � p:2i � p:1f � p:2f

velocity components along that axis:

m1v1i � m2v2i � m1v1f � m2v2f .

● If the bodies stick together, the collision is a completely
inelastic collision and the bodies have the same final veloc-
ity V (because they are stuck together).

● The center of mass of a closed, isolated system of two col-
liding bodies is not affected by a collision. In particular, the ve-
locity of the center of mass cannot be changed by the
collision.

v:com

Learning Objectives

Key Ideas



Inelastic Collisions in One Dimension
One-Dimensional Inelastic Collision
Figure 9-14 shows two bodies just before and just after they have a one-
dimensional collision. The velocities before the collision (subscript i) and after
the collision (subscript f ) are indicated.The two bodies form our system, which is
closed and isolated.We can write the law of conservation of linear momentum for
this two-body system as

,

which we can symbolize as

(conservation of linear momentum). (9-50)

Because the motion is one-dimensional, we can drop the overhead arrows for
vectors and use only components along the axis, indicating direction with a sign.
Thus, from p � mv, we can rewrite Eq. 9-50 as

m1v1i � m2v2i � m1v1f � m2v2f. (9-51)

If we know values for, say, the masses, the initial velocities, and one of the final ve-
locities, we can find the other final velocity with Eq. 9-51.

One-Dimensional Completely Inelastic Collision
Figure 9-15 shows two bodies before and after they have a completely inelastic
collision (meaning they stick together).The body with mass m2 happens to be ini-
tially at rest (v2i � 0). We can refer to that body as the target and to the incoming
body as the projectile. After the collision, the stuck-together bodies move with
velocity V. For this situation, we can rewrite Eq. 9-51 as

m1v1i � (m1 � m2)V (9-52)

or . (9-53)

If we know values for, say, the masses and the initial velocity v1i of the projectile,
we can find the final velocity V with Eq. 9-53. Note that V must be less than v1i be-
cause the mass ratio m1/(m1 � m2) must be less than unity.

Velocity of the Center of Mass
In a closed, isolated system, the velocity of the center of mass of the system
cannot be changed by a collision because, with the system isolated, there is no net
external force to change it. To get an expression for , let us return to the v:com

v:com

V �
m1

m1 � m2
v1i

p:1i � p:2i � p:1f � p:2f

�total momentum P
:

i

before the collision� � �total momentum P
:

f

after the collision �
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Figure 9-14 Bodies 1 and 2 move along an
x axis, before and after they have an
inelastic collision.

m1 m2

Before

Body 1 Body 2 

x

v1i v2i

m1 m2

After
x

v1f v2f

Here is the generic setup
for an inelastic collision.

Figure 9-15 A completely inelastic collision between
two bodies. Before the collision, the body with mass
m2 is at rest and the body with mass m1 moves
directly toward it. After the collision, the stuck-
together bodies move with the same velocity .V

:

m1
Projectile

m2
Target 

x

x

V

v1i

After

Before

m1 + m2

v2i = 0 

In a completely inelastic
collision, the bodies
stick together.



two-body system and one-dimensional collision of Fig. 9-14. From Eq. 9-25
, we can relate to the total linear momentum of that two-body

system by writing

. (9-54)

The total linear momentum is conserved during the collision; so it is given by
either side of Eq. 9-50. Let us use the left side to write

. (9-55)

Substituting this expression for in Eq. 9-54 and solving for give us

. (9-56)

The right side of this equation is a constant, and has that same constant value
before and after the collision.

For example, Fig. 9-16 shows, in a series of freeze-frames, the motion of the
center of mass for the completely inelastic collision of Fig. 9-15. Body 2 is the tar-
get, and its initial linear momentum in Eq. 9-56 is Body 1 is
the projectile, and its initial linear momentum in Eq. 9-56 is Note
that as the series of freeze-frames progresses to and then beyond the collision,
the center of mass moves at a constant velocity to the right. After the
collision, the common final speed V of the bodies is equal to because then
the center of mass travels with the stuck-together bodies.

v:com

p:1i � m1v:1i.
p:2i � m2v:2i � 0.

v:com

v:com �
P
:

m1 � m2
�

p:1i � p:2i

m1 � m2

v:comP
:

P
:

� p:1i � p:2i

P
:

P
:

� M v:com � (m1 � m2)v:com

P
:

v:com(P
:

� M v:com)
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x

m1

v1i v2i = 0 
m2

m1 + m2

V = vcom

Collision!

vcom

The com of the two
bodies is between
them and moves at a
constant velocity.

Here is the
incoming projectile.

The com moves at the
same velocity even after
the bodies stick together.

Here is the
stationary target.

Figure 9-16 Some freeze-frames of the two-body system
in Fig. 9-15, which undergoes a completely inelastic col-
lision. The system’s center of mass is shown in each
freeze-frame. The velocity of the center of mass is
unaffected by the collision. Because the bodies stick
together after the collision, their common velocity 
must be equal to .v:com

V
:

v:com

Checkpoint 7
Body 1 and body 2 are in a completely inelastic one-dimensional collision.What is
their final momentum if their initial momenta are, respectively, (a) 10 kg 
m/s and 0;
(b) 10 kg 
m/s and 4 kg 
m/s; (c) 10 kg 
m/s and �4 kg 
m/s?
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Additional examples, video, and practice available at WileyPLUS

m

h

M

v

There are two events here.
The bullet collides with the
block. Then the bullet–block
system swings upward by
height h.

Figure 9-17 A ballistic
pendulum, used to
measure the speeds
of bullets.

Sample Problem 9.07 Conservation of momentum, ballistic pendulum

Here is an example of a common technique in physics. We
have a demonstration that cannot be worked out as a whole
(we don’t have a workable equation for it). So, we break it
up into steps that can be worked separately (we have equa-
tions for them).

The ballistic pendulum was used to measure the speeds of
bullets before electronic timing devices were developed. The
version shown in Fig. 9-17 consists of a large block of wood of
mass M � 5.4 kg, hanging from two long cords. A bullet of
mass m � 9.5 g is fired into the block, coming quickly to rest.
The block � bullet then swing upward, their center of mass
rising a vertical distance h � 6.3 cm before the pendulum
comes momentarily to rest at the end of its arc. What is the
speed of the bullet just prior to the collision?

KEY IDEAS

We can see that the bullet’s speed v must determine the rise
height h. However, we cannot use the conservation of mechan-
ical energy to relate these two quantities because surely energy
is transferred from mechanical energy to other forms (such as
thermal energy and energy to break apart the wood) as the
bullet penetrates the block. Nevertheless, we can split this com-
plicated motion into two steps that we can separately analyze:
(1) the bullet–block collision and (2) the bullet–block rise,
during which mechanical energy is conserved.

Reasoning step 1: Because the collision within the
bullet – block system is so brief, we can make two impor-
tant assumptions: (1) During the collision, the gravita-
tional force on the block and the force on the block from
the cords are still balanced. Thus, during the collision, the
net external impulse on the bullet–block system is zero.
Therefore, the system is isolated and its total linear momen-
tum is conserved:

(9-57)

(2) The collision is one-dimensional in the sense that the di-
rection of the bullet and block just after the collision is in the
bullet’s original direction of motion.

Because the collision is one-dimensional, the block is ini-
tially at rest,and the bullet sticks in the block,we use Eq.9-53 to
express the conservation of linear momentum. Replacing the
symbols there with the corresponding symbols here,we have

(9-58)

Reasoning step 2: As the bullet and block now swing up to-
gether, the mechanical energy of the bullet–block–Earth

V �
m

m � M
v.

� total momentum
before the collision� � � total momentum

after the collision�.

system is conserved:

(9-59)

(This mechanical energy is not changed by the force of the
cords on the block, because that force is always directed
perpendicular to the block’s direction of travel.) Let’s take the
block’s initial level as our reference level of zero gravitational
potential energy. Then conservation of mechanical energy
means that the system’s kinetic energy at the start of the swing
must equal its gravitational potential energy at the highest
point of the swing. Because the speed of the bullet and block
at the start of the swing is the speed V immediately after the
collision, we may write this conservation as

(9-60)

Combining steps: Substituting for V from Eq. 9-58 leads to

(9-61)

(Answer)

The ballistic pendulum is a kind of “transformer,” exchang-
ing the high speed of a light object (the bullet) for the low—
and thus more easily measurable—speed of a massive ob-
ject (the block).

� 630 m/s.

� � 0.0095 kg � 5.4 kg
0.0095 kg � 2(2)(9.8 m/s2)(0.063 m)

v �
m � M

m
22gh

1
2(m � M)V 2 � (m � M)gh.

� mechanical energy
at bottom � � �mechanical energy

at top �.



Elastic Collisions in One Dimension
As we discussed in Module 9-6, everyday collisions are inelastic but we can
approximate some of them as being elastic; that is, we can approximate that the
total kinetic energy of the colliding bodies is conserved and is not transferred to
other forms of energy:

. (9-62)

This means:

�total kinetic energy
before the collision� � �total kinetic energy

after the collision �
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After reading this module, you should be able to . . .

9.32 For isolated elastic collisions in one dimension, apply the
conservation laws for both the total energy and the net mo-
mentum of the colliding bodies to relate the initial values to
the values after the collision.

9.33 For a projectile hitting a stationary target, identify the re-
sulting motion for the three general cases: equal masses,
target more massive than projectile, projectile more mas-
sive than target.

● An elastic collision is a special type of collision in which
the kinetic energy of a system of colliding bodies is con-
served. If the system is closed and isolated, its linear mo-
mentum is also conserved. For a one-dimensional collision in
which body 2 is a target and body 1 is an incoming projec-
tile, conservation of kinetic energy and linear momentum

yield the following expressions for the velocities immediately
after the collision:

and v2f �
2m1

m1 � m2
v1i.

v1f �
m1 � m2

m1 � m2
v1i

Learning Objectives

Key Idea

In an elastic collision, the kinetic energy of each colliding body may change, but 
the total kinetic energy of the system does not change.

For example, the collision of a cue ball with an object ball in a game of pool
can be approximated as being an elastic collision. If the collision is head-on
(the cue ball heads directly toward the object ball), the kinetic energy of the cue
ball can be transferred almost entirely to the object ball. (Still, the collision trans-
fers some of the energy to the sound you hear.)

Stationary Target
Figure 9-18 shows two bodies before and after they have a one-dimensional colli-
sion, like a head-on collision between pool balls. A projectile body of mass m1

and initial velocity v1i moves toward a target body of mass m2 that is initially at
rest (v2i � 0). Let’s assume that this two-body system is closed and isolated. Then
the net linear momentum of the system is conserved, and from Eq. 9-51 we can write
that conservation as

m1v1i � m1v1f � m2v2f (linear momentum). (9-63)

If the collision is also elastic, then the total kinetic energy is conserved and we
can write that conservation as

(kinetic energy). (9-64)

In each of these equations, the subscript i identifies the initial velocities and the
subscript f the final velocities of the bodies. If we know the masses of the bodies
and if we also know v1i, the initial velocity of body 1, the only unknown quantities
are v1f and v2f, the final velocities of the two bodies.With two equations at our dis-
posal, we should be able to find these two unknowns.

1
2m1v1i

2 � 1
2m1v1f

2 � 1
2m2v2f

2

Figure 9-18 Body 1 moves along an x axis
before having an elastic collision with
body 2, which is initially at rest. Both
bodies move along that axis after the
collision.

x

Before v1i

m1
Projectile

m2
Target 

v2i = 0 

x
After

v1f

m1 m2

v2f

Here is the generic setup
for an elastic collision with
a stationary target.



To do so, we rewrite Eq. 9-63 as

m1(v1i � v1f) � m2v2f (9-65)
and Eq. 9-64 as*

(9-66)

After dividing Eq. 9-66 by Eq. 9-65 and doing some more algebra, we obtain

(9-67)

and (9-68)

Note that v2f is always positive (the initially stationary target body with mass m2

always moves forward). From Eq. 9-67 we see that v1f may be of either sign (the
projectile body with mass m1 moves forward if m1 � m2 but rebounds if m1 � m2).

Let us look at a few special situations.

1. Equal masses If m1 � m2, Eqs. 9-67 and 9-68 reduce to

v1f � 0 and v2f � v1i,

which we might call a pool player’s result. It predicts that after a head-on colli-
sion of bodies with equal masses, body 1 (initially moving) stops dead in its
tracks and body 2 (initially at rest) takes off with the initial speed of body 1. In
head-on collisions, bodies of equal mass simply exchange velocities. This is
true even if body 2 is not initially at rest.

2. A massive target In Fig. 9-18, a massive target means that m2 m1. For
example, we might fire a golf ball at a stationary cannonball. Equations 9-67
and 9-68 then reduce to

(9-69)

This tells us that body 1 (the golf ball) simply bounces back along its incom-
ing path, its speed essentially unchanged. Initially stationary body 2 (the
cannonball) moves forward at a low speed, because the quantity in paren-
theses in Eq. 9-69 is much less than unity.All this is what we should expect.

3. A massive projectile This is the opposite case; that is, m1 m2. This time, we
fire a cannonball at a stationary golf ball. Equations 9-67 and 9-68 reduce to

v1f � v1i and v2f � 2v1i. (9-70)

Equation 9-70 tells us that body 1 (the cannonball) simply keeps on going,
scarcely slowed by the collision. Body 2 (the golf ball) charges ahead at twice
the speed of the cannonball. Why twice the speed? Recall the collision de-
scribed by Eq. 9-69, in which the velocity of the incident light body (the golf
ball) changed from �v to �v, a velocity change of 2v. The same change in ve-
locity (but now from zero to 2v) occurs in this example also.

Moving Target
Now that we have examined the elastic collision of a projectile and a stationary
target, let us examine the situation in which both bodies are moving before they
undergo an elastic collision.

For the situation of Fig. 9-19, the conservation of linear momentum is written as

m1v1i � m2v2i � m1v1f � m2v2f , (9-71)

�

v1f � �v1i and v2f � � 2m1

m2
�v1i.

�

v2f �
2m1

m1 � m2
v1i.

v1f �
m1 � m2

m1 � m2
v1i

m1(v1i � v1f)(v1i � v1f) � m2v2f
2 .

238 CHAPTER 9 CENTER OF MASS AND LINEAR MOMENTUM

*In this step, we use the identity a2 � b2 � (a � b)(a � b). It reduces the amount of algebra needed to
solve the simultaneous equations Eqs. 9-65 and 9-66.



and the conservation of kinetic energy is written as

(9-72)

To solve these simultaneous equations for v1f and v2f , we first rewrite Eq. 9-71 as

m1(v1i � v1f) � �m2(v2i � v2f), (9-73)
and Eq. 9-72 as

m1(v1i � v1f)(v1i � v1f) � �m2(v2i � v2f)(v2i � v2f). (9-74)

After dividing Eq. 9-74 by Eq. 9-73 and doing some more algebra, we obtain

(9-75)

and (9-76)

Note that the assignment of subscripts 1 and 2 to the bodies is arbitrary. If we ex-
change those subscripts in Fig. 9-19 and in Eqs. 9-75 and 9-76, we end up with the
same set of equations. Note also that if we set v2i � 0, body 2 becomes a stationary
target as in Fig. 9-18, and Eqs. 9-75 and 9-76 reduce to Eqs. 9-67 and 9-68, respectively.

v2f �
2m1

m1 � m2
v1i �

m2 � m1

m1 � m2
v2i.

v1f �
m1 � m2

m1 � m2
v1i �

2m2

m1 � m2
v2i

1
2m1v1i

2 � 1
2m2v2i

2 � 1
2m1v1f

2 � 1
2m2v2f

2 .
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Figure 9-19 Two bodies headed for a one-
dimensional elastic collision.

x
m1

v1i

m2

v2i

Here is the generic setup
for an elastic collision with
a moving target.

Checkpoint 8
What is the final linear momentum of the target in Fig. 9-18 if the initial linear momen-
tum of the projectile is 6 kg 
m/s and the final linear momentum of the projectile is (a)
2 kg 
m/s and (b) �2 kg 
m/s? (c) What is the final kinetic energy of the target if the
initial and final kinetic energies of the projectile are, respectively, 5 J and 2 J?

two reasons, we can apply Eqs. 9-67 and 9-68 to each of the
collisions.

Calculations: If we start with the first collision, we have too
many unknowns to make any progress: we do not know the
masses or the final velocities of the blocks. So, let’s start with
the second collision in which block 2 stops because of its col-
lision with block 3. Applying Eq. 9-67 to this collision, with
changes in notation, we have

where v2i is the velocity of block 2 just before the collision
and v2f is the velocity just afterward. Substituting v2f � 0
(block 2 stops) and then m3 � 6.0 kg gives us

(Answer)

With similar notation changes, we can rewrite Eq. 9-68 for
the second collision as

where v3f is the final velocity of block 3. Substituting m2 � m3

and the given v3f � 5.0 m/s, we find

v2i � v3f � 5.0 m/s.

v3f �
2m2

m2 � m3
v2i,

m2 � m3 � 6.00 kg.

v2f �
m2 � m3

m2 � m3
v2i,

Sample Problem 9.08 Chain reaction of elastic collisions

Figure 9-20 Block 1 collides with stationary block 2, which then
collides with stationary block 3.

In Fig. 9-20a, block 1 approaches a line of two stationary
blocks with a velocity of v1i � 10 m/s. It collides with block 2,
which then collides with block 3, which has mass m3 � 6.0 kg.
After the second collision, block 2 is again stationary and
block 3 has velocity v3f � 5.0 m/s (Fig. 9-20b).Assume that the
collisions are elastic. What are the masses of blocks 1 and 2?
What is the final velocity v1f of block 1?

KEY IDEAS

Because we assume that the collisions are elastic, we are to
conserve mechanical energy (thus energy losses to sound,
heating, and oscillations of the blocks are negligible).
Because no external horizontal force acts on the blocks, we
are to conserve linear momentum along the x axis. For these

(a)

(b)

v1i

v1f

v3f

m1 m2 m3

x

x



Collisions in Two Dimensions
When two bodies collide, the impulse between them determines the directions in
which they then travel. In particular, when the collision is not head-on, the bodies
do not end up traveling along their initial axis. For such two-dimensional
collisions in a closed, isolated system, the total linear momentum must still be
conserved:

. (9-77)

If the collision is also elastic (a special case), then the total kinetic energy is also
conserved:

K1i � K2i � K1f � K2f . (9-78)

Equation 9-77 is often more useful for analyzing a two-dimensional collision
if we write it in terms of components on an xy coordinate system. For example,
Fig. 9-21 shows a glancing collision (it is not head-on) between a projectile body and a
target body initially at rest.The impulses between the bodies have sent the bodies off
at angles u1 and u2 to the x axis,along which the projectile initially traveled. In this situ-

P
:

1i � P
:

2i � P
:

1f � P
:

2f
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Additional examples, video, and practice available at WileyPLUS

which leads to

(Answer)

Finally, applying Eq. 9-67 to the first collision with this result
and the given v1i, we write

(Answer)�
1
3m2 � m2
1
3m2 � m2

(10 m/s) � �5.0 m/s.

v1f �
m1 � m2

m1 � m2
v1i,

m1 � 1
3m2 � 1

3(6.0 kg) � 2.0 kg.

Next, let’s reconsider the first collision, but we have to
be careful with the notation for block 2: its velocity v2f just
after the first collision is the same as its velocity v2i (� 5.0 m/s)
just before the second collision. Applying Eq. 9-68 to the
first collision and using the given v1i � 10 m/s, we have

5.0 m/s �
2m1

m1 � m2
 (10 m/s),

v2f �
2m1

m1 � m2
v1i,

9-8 COLLISIONS IN TWO DIMENSIONS

After reading this module, you should be able to . . .

9.34 For an isolated system in which a two-dimensional colli-
sion occurs, apply the conservation of momentum along
each axis of a coordinate system to relate the momentum
components along an axis before the collision to the momen-
tum components along the same axis after the collision.

9.35 For an isolated system in which a two-dimensional elastic
collision occurs, (a) apply the conservation of momentum
along each axis of a coordinate system to relate the momen-
tum components along an axis before the collision to the 
momentum components along the same axis after the colli-
sion and (b) apply the conservation of total kinetic energy to
relate the kinetic energies before and after the collision.

● If two bodies collide and their motion is not along a single axis
(the collision is not head-on), the collision is two-dimensional.
If the two-body system is closed and isolated, the law of con-
servation of momentum applies to the collision and can be
written as

.P
:

1i � P
:

2i � P
:

1f � P
:

2f

In component form, the law gives two equations that de-
scribe the collision (one equation for each of the two dimen-
sions). If the collision is also elastic (a special case), the
conservation of kinetic energy during the collision gives a
third equation:

K1i � K2i � K1f � K2f .

Learning Objectives

Key Idea

Figure 9-21 An elastic collision between two
bodies in which the collision is not head-
on. The body with mass m2 (the target) is
initially at rest.

x

y

θ2 

θ1 v1i

v2f

v1f

m1

m2

A glancing collision
that conserves
both momentum and
kinetic energy.



ation we would rewrite Eq.9-77 for components along the x axis as

m1v1i � m1v1f cos u1 � m2v2f cos u2, (9-79)
and along the y axis as

(9-80)

We can also write Eq. 9-78 (for the special case of an elastic collision) in terms of
speeds:

(kinetic energy). (9-81)

Equations 9-79 to 9-81 contain seven variables: two masses, m1 and m2; three
speeds, v1i, v1f , and v2f ; and two angles, u1 and u2. If we know any four of these
quantities, we can solve the three equations for the remaining three quantities.

1
2m1v1i

2 � 1
2m1v1f

2 � 1
2m2v2f

2

0 � �m1v1f sin u1 � m2v2f sin u2.
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Checkpoint 9
In Fig. 9-21, suppose that the projectile has an initial momentum of 6 kg 
m/s, a final
x component of momentum of 4 kg 
m/s, and a final y component of momentum of
�3 kg 
m/s. For the target, what then are (a) the final x component of momentum
and (b) the final y component of momentum?

9-9 SYSTEMS WITH VARYING MASS: A ROCKET

After reading this module, you should be able to . . .

9.36 Apply the first rocket equation to relate the rate at which
the rocket loses mass, the speed of the exhaust products rel-
ative to the rocket, the mass of the rocket, and the accelera-
tion of the rocket.

9.37 Apply the second rocket equation to relate the change in
the rocket’s speed to the relative speed of the exhaust
products and the initial and final mass of the rocket.

9.38 For a moving system undergoing a change in mass at a
given rate, relate that rate to the change in momentum.

● In the absence of external forces a rocket accelerates at an
instantaneous rate given by

Rvrel � Ma (first rocket equation),

in which M is the rocket’s instantaneous mass (including
unexpended fuel), R is the fuel consumption rate, and vrel is

the fuel’s exhaust speed relative to the rocket. The term Rvrel

is the thrust of the rocket engine.

● For a rocket with constant R and vrel, whose speed
changes from vi to vf when its mass changes from Mi to Mf ,

(second rocket equation).vf � vi � vrel ln
Mi

Mf

Learning Objectives

Key Ideas

Systems with Varying Mass: A Rocket
So far, we have assumed that the total mass of the system remains constant.
Sometimes, as in a rocket, it does not. Most of the mass of a rocket on its launch-
ing pad is fuel, all of which will eventually be burned and ejected from the nozzle
of the rocket engine. We handle the variation of the mass of the rocket as the
rocket accelerates by applying Newton’s second law, not to the rocket alone but
to the rocket and its ejected combustion products taken together.The mass of this
system does not change as the rocket accelerates.

Finding the Acceleration
Assume that we are at rest relative to an inertial reference frame, watching a
rocket accelerate through deep space with no gravitational or atmospheric drag
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Figure 9-22 (a) An accelerating rocket of
mass M at time t, as seen from an inertial
reference frame. (b) The same but at time
t � dt. The exhaust products released dur-
ing interval dt are shown.

forces acting on it. For this one-dimensional motion, let M be the mass of the
rocket and v its velocity at an arbitrary time t (see Fig. 9-22a).

Figure 9-22b shows how things stand a time interval dt later. The rocket now
has velocity v � dv and mass M � dM, where the change in mass dM is a negative
quantity. The exhaust products released by the rocket during interval dt have
mass �dM and velocity U relative to our inertial reference frame.

Conserve Momentum. Our system consists of the rocket and the exhaust
products released during interval dt. The system is closed and isolated, so the lin-
ear momentum of the system must be conserved during dt; that is,

Pi � Pf , (9-82)

where the subscripts i and f indicate the values at the beginning and end of time
interval dt. We can rewrite Eq. 9-82 as

Mv � �dM U � (M � dM)(v � dv), (9-83)

where the first term on the right is the linear momentum of the exhaust products
released during interval dt and the second term is the linear momentum of the
rocket at the end of interval dt.

Use Relative Speed. We can simplify Eq.9-83 by using the relative speed vrel be-
tween the rocket and the exhaust products,which is related to the velocities relative to
the frame with

.

In symbols, this means

(v � dv) � vrel � U,

or U � v � dv � vrel. (9-84)

Substituting this result for U into Eq. 9-83 yields, with a little algebra,

�dM vrel � M dv. (9-85)

Dividing each side by dt gives us

(9-86)

We replace dM/dt (the rate at which the rocket loses mass) by �R, where R is the
(positive) mass rate of fuel consumption, and we recognize that dv/dt is the accel-
eration of the rocket.With these changes, Eq. 9-86 becomes

Rvrel � Ma (first rocket equation). (9-87)

Equation 9-87 holds for the values at any given instant.
Note the left side of Eq. 9-87 has the dimensions of force (kg/s 
m/s �

kg 
m/s2 � N) and depends only on design characteristics of the rocket engine—
namely, the rate R at which it consumes fuel mass and the speed vrel with which that
mass is ejected relative to the rocket.We call this term Rvrel the thrust of the rocket
engine and represent it with T. Newton’s second law emerges if we write Eq. 9-87 as
T � Ma, in which a is the acceleration of the rocket at the time that its mass is M.

Finding the Velocity
How will the velocity of a rocket change as it consumes its fuel? From Eq. 9-85
we have

dv � �vrel
dM
M

.

�
dM
dt

vrel � M
dv
dt

.

�velocity of rocket
relative to frame � � � velocity of rocket

relative to products� � �velocity of products
relative to frame �

x

vM

System boundary

(a)

x

v + dvM + dM

System boundary

(b)

–dM

U

The ejection of mass from
the rocket's rear increases
the rocket's speed.



Integrating leads to

in which Mi is the initial mass of the rocket and Mf its final mass. Evaluating the
integrals then gives

(second rocket equation) (9-88)

for the increase in the speed of the rocket during the change in mass from Mi to
Mf . (The symbol “ln” in Eq. 9-88 means the natural logarithm.) We see here the
advantage of multistage rockets, in which Mf is reduced by discarding successive
stages when their fuel is depleted. An ideal rocket would reach its destination
with only its payload remaining.

vf � vi � vrel ln 
Mi

Mf

�vf

vi

dv � �vrel �Mf

Mi

dM
M

,
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rocket’s mass. However, M decreases and a increases as fuel
is consumed. Because we want the initial value of a here, we
must use the intial value Mi of the mass.

Calculation: We find

(Answer)

To be launched from Earth’s surface, a rocket must have
an initial acceleration greater than . That is, it
must be greater than the gravitational acceleration at the
surface. Put another way, the thrust T of the rocket engine
must exceed the initial gravitational force on the rocket,
which here has the magnitude Mig, which gives us 

(850 kg)(9.8 m/s2) � 8330 N.

Because the acceleration or thrust requirement is not met
(here T � 6400 N), our rocket could not be launched from
Earth’s surface by itself; it would require another, more
powerful, rocket.

g � 9.8 m/s2

a �
T
Mi

�
6440 N
850 kg

� 7.6 m/s2.

Sample Problem 9.09 Rocket engine, thrust, acceleration

In all previous examples in this chapter, the mass of a system
is constant (fixed as a certain number). Here is an example of
a system (a rocket) that is losing mass.A rocket whose initial
mass Mi is 850 kg consumes fuel at the rate The
speed vrel of the exhaust gases relative to the rocket engine is
2800 m/s.What thrust does the rocket engine provide?

KEY IDEA

Thrust T is equal to the product of the fuel consumption
rate R and the relative speed vrel at which exhaust gases are
expelled, as given by Eq. 9-87.

Calculation: Here we find

(Answer)

(b) What is the initial acceleration of the rocket?

KEY IDEA

We can relate the thrust T of a rocket to the magnitude a of
the resulting acceleration with , where M is theT � Ma

� 6440 N � 6400 N.

T � Rvrel � (2.3 kg/s)(2800 m/s)

R � 2.3 kg/s.

Additional examples, video, and practice available at WileyPLUS

Center of Mass The center of mass of a system of n particles is
defined to be the point whose coordinates are given by

(9-5)

or (9-8)

where M is the total mass of the system.

r:com �
1
M �

n

i�1
mi r:i ,

xcom �
1
M �

n

i�1
mi xi , ycom �

1
M �

n

i�1
mi yi , zcom �

1
M �

n

i�1
mi zi ,

Review & Summary

Newton’s Second Law for a System of Particles The
motion of the center of mass of any system of particles is governed
by Newton’s second law for a system of particles, which is

. (9-14)

Here is the net force of all the external forces acting on the sys-F
:

net

F
:

net � M a:com

tem, M is the total mass of the system, and is the acceleration
of the system’s center of mass.

a:com
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must be conserved (it is a constant), which we can write in vector
form as

, (9-50)

where subscripts i and f refer to values just before and just after the
collision, respectively.

If the motion of the bodies is along a single axis, the collision is
one-dimensional and we can write Eq. 9-50 in terms of velocity
components along that axis:

m1v1i � m2v2i � m1v1f � m2v2f . (9-51)

If the bodies stick together, the collision is a completely
inelastic collision and the bodies have the same final velocity V
(because they are stuck together).

Motion of the Center of Mass The center of mass of a
closed, isolated system of two colliding bodies is not affected by a
collision. In particular, the velocity of the center of mass can-
not be changed by the collision.

Elastic Collisions in One Dimension An elastic collision
is a special type of collision in which the kinetic energy of a system
of colliding bodies is conserved. If the system is closed and
isolated, its linear momentum is also conserved. For a one-
dimensional collision in which body 2 is a target and body 1 is an
incoming projectile, conservation of kinetic energy and linear
momentum yield the following expressions for the velocities
immediately after the collision:

(9-67)

and (9-68)

Collisions in Two Dimensions If two bodies collide and
their motion is not along a single axis (the collision is not head-on),
the collision is two-dimensional. If the two-body system is closed
and isolated, the law of conservation of momentum applies to the
collision and can be written as

. (9-77)

In component form, the law gives two equations that describe the
collision (one equation for each of the two dimensions). If the col-
lision is also elastic (a special case), the conservation of kinetic en-
ergy during the collision gives a third equation:

K1i � K2i � K1f � K2f . (9-78)

Variable-Mass Systems In the absence of external forces a
rocket accelerates at an instantaneous rate given by

Rvrel � Ma (first rocket equation), (9-87)

in which M is the rocket’s instantaneous mass (including
unexpended fuel), R is the fuel consumption rate, and vrel is the fuel’s
exhaust speed relative to the rocket. The term Rvrel is the thrust of
the rocket engine. For a rocket with constant R and vrel, whose speed
changes from vi to vf when its mass changes from Mi to Mf,

(second rocket equation). (9-88)vf � vi � vrel ln
Mi

Mf

P
:

1i � P
:

2i � P
:

1f � P
:

2f

v2f �
2m1

m1 � m2
v1i.

v1f �
m1 � m2

m1 � m2
v1i

v:com

p:1i � p:2i � p:1f � p:2f

tum, and is the impulse due to the force exerted on the body
by the other body in the collision:

(9-30)

If Favg is the average magnitude of during the collision and �t
is the duration of the collision, then for one-dimensional motion

J � Favg �t. (9-35)

When a steady stream of bodies, each with mass m and speed v, col-
lides with a body whose position is fixed, the average force on the
fixed body is

(9-37)

where n/�t is the rate at which the bodies collide with the fixed
body, and �v is the change in velocity of each colliding body. This
average force can also be written as

(9-40)

where �m/�t is the rate at which mass collides with the fixed body. In
Eqs. 9-37 and 9-40, �v � �v if the bodies stop upon impact and �v �
�2v if they bounce directly backward with no change in their speed.

Conservation of Linear Momentum If a system is isolated
so that no net external force acts on it, the linear momentum of
the system remains constant:

(closed, isolated system). (9-42)

This can also be written as

(closed, isolated system), (9-43)

where the subscripts refer to the values of at some initial time and
at a later time. Equations 9-42 and 9-43 are equivalent statements of
the law of conservation of linear momentum.

Inelastic Collision in One Dimension In an inelastic
collision of two bodies, the kinetic energy of the two-body
system is not conserved (it is not a constant). If the system is
closed and isolated, the total linear momentum of the system

P
:

P
:

i � P
:

f

P
:

� constant

P
:

Favg � �
�m
�t

�v,

Favg � �
n
�t

�p � �
n
�t

m �v,

F
:

(t)

J
:

� �tf

ti

F
:

(t) dt.

F
:

(t)J
:

Linear Momentum and Newton’s Second Law For a sin-
gle particle, we define a quantity called its linear momentum as

, (9-22)

and can write Newton’s second law in terms of this momentum:

(9-23)

For a system of particles these relations become

and (9-25, 9-27)

Collision and Impulse Applying Newton’s second law in
momentum form to a particle-like body involved in a collision
leads to the impulse– linear momentum theorem:

, (9-31, 9-32)

where is the change in the body’s linear momen-p:f � p:i � �p:

p:f � p:i � �p: � J
:

F
:

net �
dP

:

dt
.P

:
� Mv:com

F
:

net �
d p:

dt
.

p: � mv:
p:
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Questions

1 Figure 9-23 shows an overhead
view of three particles on which ex-
ternal forces act.The magnitudes and
directions of the forces on two of the
particles are indicated. What are the
magnitude and direction of the force
acting on the third particle if the cen-
ter of mass of the three-particle sys-
tem is (a) stationary, (b) moving at a
constant velocity rightward, and (c) accelerating rightward?

2 Figure 9-24 shows an over-
head view of four particles of
equal mass sliding over a fric-
tionless surface at constant
velocity. The directions of the
velocities are indicated; their
magnitudes are equal. Consider
pairing the particles. Which
pairs form a system with a cen-
ter of mass that (a) is stationary,
(b) is stationary and at the ori-
gin,and (c) passes through the origin?

3 Consider a box that explodes into two pieces while moving with
a constant positive velocity along an x axis. If one piece, with mass
m1, ends up with positive velocity , then the second piece, with
mass m2, could end up with (a) a positive velocity (Fig. 9-25a), (b)
a negative velocity (Fig. 9-25b), or (c) zero velocity (Fig. 9-25c).
Rank those three possible results for the second piece according to
the corresponding magnitude of , greatest first.v1

:

v2
:

v2
:

v1
:

boxes move over a frictionless confectioner’s counter. For each box,
is its linear momentum conserved along the x axis and the y axis?

6 Figure 9-28 shows four groups of three or four identical particles
that move parallel to either the x axis or the y axis, at identical speeds.
Rank the groups according to center-of-mass speed, greatest first.

y

1
5 N 

3 N 2

3
x

Figure 9-23 Question 1.

c d 

a

y (m)

2

–2 2 4 –4

–2

x (m)

b

Figure 9-24 Question 2.

v2 v2v1 v1

(b) (c)(a)

v1

Figure 9-25 Question 3.
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Figure 9-26 Question 4.
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Figure 9-27 Question 5.

4 Figure 9-26 shows graphs of force magnitude versus time for a
body involved in a collision. Rank the graphs according to the
magnitude of the impulse on the body, greatest first.

5 The free-body diagrams in Fig. 9-27 give, from overhead views,
the horizontal forces acting on three boxes of chocolates as the

y

x

(a)

y

x

(c)

y

x

(b)

y

x

(d)

Figure 9-28 Question 6.

7 A block slides along a frictionless floor and into a stationary sec-
ond block with the same mass. Figure 9-29 shows four choices for a
graph of the kinetic energies K of the blocks. (a) Determine which
represent physically impossible situations. Of the others, which best
represents (b) an elastic collision and (c) an inelastic collision?

K

t
(a)

K

t
(b)

K

t

(c)

K

t
(d)

Figure 9-29 Question 7.

8 Figure 9-30 shows a snapshot of
block 1 as it slides along an x axis on a
frictionless floor, before it undergoes
an elastic collision with stationary
block 2.The figure also shows three possible positions of the center of
mass (com) of the two-block system at the time of the snapshot. (Point
B is halfway between the centers of the two blocks.) Is block 1 station-
ary, moving forward, or moving backward after the collision if the com
is located in the snapshot at (a) A, (b) B, and (c) C?

1 2 A B C 

Figure 9-30 Question 8.



9 Two bodies have undergone an
elastic one-dimensional collision
along an x axis. Figure 9-31 is a graph
of position versus time for those
bodies and for their center of mass.
(a) Were both bodies initially moving,
or was one initially stationary? Which
line segment corresponds to the mo-
tion of the center of mass (b) before the collision and (c) after the col-
lision? (d) Is the mass of the body that was moving faster before the
collision greater than, less than, or equal to that of the other body?

10 Figure 9-32: A block on a horizontal floor is initially either
stationary, sliding in the positive direction of an x axis, or sliding in
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the negative direction of that axis. Then the block explodes into
two pieces that slide along the x axis. Assume the block and the
two pieces form a closed, isolated system. Six choices for a graph of
the momenta of the block and the pieces are given, all versus time
t. Determine which choices represent physically impossible situa-
tions and explain why.

11 Block 1 with mass m1 slides
along an x axis across a frictionless
floor and then undergoes an elastic
collision with a stationary block 2 with
mass m2. Figure 9-33 shows a plot of
position x versus time t of block 1 until
the collision occurs at position xc and
time tc. In which of the lettered regions
on the graph will the plot be contin-
ued (after the collision) if (a) m1 � m2

and (b) m1 � m2? (c) Along which of
the numbered dashed lines will the
plot be continued if m1 � m2?

12 Figure 9-34 shows four graphs of
position versus time for two bodies
and their center of mass. The two
bodies form a closed, isolated system
and undergo a completely inelastic,
one-dimensional collision on an x axis.
In graph 1, are (a) the two bodies and
(b) the center of mass moving in the
positive or negative direction of the x
axis? (c) Which of the graphs corre-
spond to a physically impossible situ-
ation? Explain.

x

t
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6

Figure 9-31 Question 9.
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Figure 9-32 Question 10.
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Figure 9-33 Question 11.
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Figure 9-34 Question 12.

Module 9-1 Center of Mass
•1 A 2.00 kg particle has the xy coordinates (�1.20 m, 0.500 m),
and a 4.00 kg particle has the xy coordinates (0.600 m, �0.750 m).
Both lie on a horizontal plane. At what (a) x and (b) y coordinates
must you place a 3.00 kg particle such that the center of mass of the
three-particle system has the coor-
dinates (�0.500 m, �0.700 m)?

•2 Figure 9-35 shows a three-par-
ticle system, with masses m1 � 3.0
kg, m2 � 4.0 kg, and m3 � 8.0 kg.
The scales on the axes are set by
xs � 2.0 m and ys � 2.0 m.What are
(a) the x coordinate and (b) the y
coordinate of the system’s center
of mass? (c) If m3 is gradually in-
creased, does the center of mass of the system shift toward or away
from that particle, or does it remain stationary?

••3 Figure 9-36 shows a  slab with dimensions d1 � 11.0 cm, d2 �
2.80 cm, and d3 � 13.0 cm. Half the slab consists of aluminum (den-

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

y (m)

x (m)

ys

0 xs

m1

m3

m2

Figure 9-35 Problem 2.

Aluminum

Iron Midpoint

2d1

d2

d1

d1

d 3

y

z

x

sity � 2.70 g/cm3) and half consists of iron (density � 7.85 g/cm3).
What are (a) the x coordinate, (b) the y coordinate, and (c) the z co-
ordinate of the slab’s center of mass?

Figure 9-36 Problem 3.

http://www.wiley.com/college/halliday
www.flyingcircusofphysics.com
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••4 In Fig. 9-37, three uniform thin rods,
each of length L � 22 cm, form an in-
verted U. The vertical rods each have a
mass of 14 g; the horizontal rod has a
mass of 42 g. What are (a) the x coordi-
nate and (b) the y coordinate of the sys-
tem’s center of mass?

••5 What are (a) the x coordinate and
(b) the y coordinate of the center of mass
for the uniform plate shown in Fig. 9-38 if
L 5.0 cm?�

Module 9-2 Newton’s Second Law for a System of Particles
•9 A stone is dropped at t � 0. A second stone, with twice the
mass of the first, is dropped from the same point at
t � 100 ms. (a) How far below the release point is the center of
mass of the two stones at t � 300 ms? (Neither stone has yet
reached the ground.) (b) How fast is the center of mass of the two-
stone system moving at that time?

•10 A 1000 kg automobile is at rest at a traffic signal. At the in-
stant the light turns green, the automobile starts to move with a
constant acceleration of 4.0 m/s2. At the same instant a 2000 kg
truck, traveling at a constant speed of 8.0 m/s, overtakes and passes
the automobile. (a) How far is the com of the automobile– truck
system from the traffic light at t � 3.0 s? (b) What is the speed of
the com then?

•11 A big olive (m � 0.50 kg) lies at the origin of an xy
coordinate system, and a big Brazil nut (M � 1.5 kg) lies at the
point (1.0, 2.0) m. At t � 0, a force begins to
act on the olive, and a force begins to act on
the nut. In unit-vector notation, what is the displacement of the
center of mass of the olive–nut system at t � 4.0 s, with respect to
its position at t � 0?

•12 Two skaters, one with mass 65 kg and the other with mass
40 kg, stand on an ice rink holding a pole of length 10 m and neg-
ligible mass. Starting from the ends of the pole, the skaters pull
themselves along the pole until they meet. How far does the 40
kg skater move?

••13 A shell is shot with an initial velocity of 20 m/s, at
an angle of with the horizontal. At the top of the trajec-
tory, the shell explodes into two fragments of equal mass (Fig.
9-42). One fragment, whose speed immediately after the explo-
sion is zero, falls vertically. How far from the gun does the other
fragment land, assuming that the terrain is level and that air drag
is negligible?

�0 � 60�
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Figure 9-38 Problem 5.

••6 Figure 9-39 shows a cubical box that
has been constructed from uniform metal
plate of negligible thickness. The box is
open at the top and has edge length L �
40 cm. Find (a) the x coordinate, (b) the y
coordinate, and (c) the z coordinate of
the center of mass of the box.

•••7 In the ammonia (NH3) mole-
cule of Fig. 9-40, three hydrogen (H)
atoms form an equilateral triangle, with
the center of the triangle at distance d �
9.40 � 10�11 m from each hydrogen
atom. The nitrogen (N) atom is at the
apex of a pyramid, with the three hydro-
gen atoms forming the base. The nitro-
gen-to-hydrogen atomic mass ratio is
13.9, and the nitrogen-to-hydrogen dis-
tance is L � 10.14 � 10�11 m. What are
the (a) x and (b) y coordinates of the
molecule’s center of mass?

•••8 A uniform soda can of mass
0.140 kg is 12.0 cm tall and filled with
0.354 kg of soda (Fig. 9-41). Then small
holes are drilled in the top and bottom
(with negligible loss of metal) to drain
the soda. What is the height h of the
com of the can and contents (a) initially
and (b) after the can loses all the soda?
(c) What happens to h as the soda
drains out? (d) If x is the height of the
remaining soda at any given instant,
find x when the com reaches its lowest
point.
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Figure 9-42 Problem 13.

••14 In Figure 9-43, two particles are launched from the origin of
the coordinate system at time t � 0. Particle 1 of mass m1 � 5.00 g is
shot directly along the x axis on a frictionless floor, with constant
speed 10.0 m/s. Particle 2 of mass m2 � 3.00 g is shot with a velocity
of magnitude 20.0 m/s, at an upward angle such that it always stays
directly above particle 1. (a) What is the maximum height Hmax

reached by the com of the two-particle system? In unit-vector no-
tation, what are the (b) velocity and (c) acceleration of the com
when the com reaches Hmax?

Figure 9-43 Problem 14.
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••15 Figure 9-44 shows an arrangement with an air track, in which
a cart is connected by a cord to a hanging block. The cart has mass
m1 � 0.600 kg, and its center is initially at xy coordinates (�0.500
m, 0 m); the block has mass m2 � 0.400 kg, and its center is initially at
xy coordinates (0, �0.100 m).The mass of the cord and pulley are neg-
ligible. The cart is released from rest, and both cart and block move
until the cart hits the pulley. The friction between the cart and the air
track and between the pulley and its axle is negligible. (a) In unit-vec-
tor notation, what is the acceleration of the center of mass of the
cart–block system? (b) What is the velocity of the com as a function
of time t? (c) Sketch the path taken by the com. (d) If the path is
curved, determine whether it bulges upward to the right or downward
to the left, and if it is straight, find the angle between it and the x axis.

••21 A 0.30 kg softball has a velocity of 15 m/s at an angle of 35� be-
low the horizontal just before making contact with the bat.What is the
magnitude of the change in momentum of the ball while in contact
with the bat if the ball leaves with a velocity of (a) 20 m/s, vertically
downward,and (b) 20 m/s,horizontally back toward the pitcher?

••22 Figure 9-47 gives an overhead
view of the path taken by a 0.165 kg
cue ball as it bounces from a rail of a
pool table. The ball’s initial speed is
2.00 m/s, and the angle u1 is 30.0�.The
bounce reverses the y component of
the ball’s velocity but does not alter
the x component. What are (a) angle
u2 and (b) the change in the ball’s lin-
ear momentum in unit-vector nota-
tion? (The fact that the ball rolls is ir-
relevant to the problem.)

Module 9-4 Collision and Impulse
•23 Until his seventies, Henri LaMothe (Fig. 9-48) excited
audiences by belly-flopping from a height of 12 m into 30 cm of
water. Assuming that he stops just as he reaches the bottom of the
water and estimating his mass, find the magnitude of the impulse
on him from the water.

Figure 9-44 Problem 15.

y

x

m2

m1

•••16 Ricardo, of mass 80 kg, and Carmelita, who is lighter,
are enjoying Lake Merced at dusk in a 30 kg canoe.When the ca-
noe is at rest in the placid water, they exchange seats, which are
3.0 m apart and symmetrically lo-
cated with respect to the canoe’s
center. If the canoe moves 40 cm
horizontally relative to a pier post,
what is Carmelita’s mass?

•••17 In Fig. 9-45a, a 4.5 kg dog
stands on an 18 kg flatboat at dis-
tance D � 6.1 m from the shore. It
walks 2.4 m along the boat toward
shore and then stops. Assuming no
friction between the boat and the wa-
ter, find how far the dog is then from
the shore.(Hint: See Fig.9-45b.)

Module 9-3 Linear Momentum
•18 A 0.70 kg ball moving horizontally at 5.0 m/s strikes a vertical
wall and rebounds with speed 2.0 m/s.What is the magnitude of the
change in its linear momentum?

•19 A 2100 kg truck traveling north at 41 km/h turns east
and accelerates to 51 km/h. (a) What is the change in the truck’s
kinetic energy? What are the (b) magnitude and (c) direction of
the change in its momentum?

••20 At time t � 0, a ball is
struck at ground level and sent over
level ground.The momentum p ver-
sus t during the flight is given by Fig.
9-46 (with and

). At what initial
angle is the ball launched? (Hint:
Find a solution that does not
require you to read the time of the
low point of the plot.)

p1 � 4.0 kg
m/s
p0 � 6.0 kg
m/s
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Figure 9-48 Problem 23. Belly-flopping into 30 cm of water.

•24 In February 1955, a paratrooper fell 370 m from an air-
plane without being able to open his chute but happened to land in
snow, suffering only minor injuries. Assume that his speed at im-
pact was 56 m/s (terminal speed), that his mass (including gear)
was 85 kg, and that the magnitude of the force on him from the
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12.0 m/s and angle u1 � 35.0�. Just
after, it is traveling directly upward
with velocity of magnitude 10.0
m/s. The duration of the collision is
2.00 ms. What are the (a) magni-

v:2

snow was at the survivable limit of 1.2 � 105 N. What are (a) the
minimum depth of snow that would have stopped him safely and
(b) the magnitude of the impulse on him from the snow?

•25 A 1.2 kg ball drops vertically onto a floor, hitting with a
speed of 25 m/s. It rebounds with an initial speed of 10 m/s. (a)
What impulse acts on the ball during the contact? (b) If the ball is
in contact with the floor for 0.020 s, what is the magnitude of the
average force on the floor from the ball?

•26 In a common but dangerous prank, a chair is pulled away as
a person is moving downward to sit on it, causing the victim to land
hard on the floor. Suppose the victim falls by 0.50 m, the mass that
moves downward is 70 kg, and the collision on the floor lasts 0.082 s.
What are the magnitudes of the (a) impulse and (b) average force
acting on the victim from the floor during the collision?

•27 A force in the negative direction of an x axis is applied
for 27 ms to a 0.40 kg ball initially moving at 14 m/s in the positive
direction of the axis. The force varies in magnitude, and the im-
pulse has magnitude 32.4 N 
s.What are the ball’s (a) speed and (b)
direction of travel just after the force is applied? What are (c) the
average magnitude of the force and (d) the direction of the im-
pulse on the ball?

•28 In tae-kwon-do, a hand is slammed down onto a target
at a speed of 13 m/s and comes to a stop during the 5.0 ms collision.
Assume that during the impact the hand is independent of the arm
and has a mass of 0.70 kg. What are the magnitudes of the (a) im-
pulse and (b) average force on the hand from the target?

•29 Suppose a gangster sprays Superman’s chest with 3 g bullets
at the rate of 100 bullets/min, and the speed of each bullet is 500
m/s. Suppose too that the bullets rebound straight back with no
change in speed. What is the magnitude of the average force on
Superman’s chest?

••30 Two average forces. A steady stream of 0.250 kg snowballs is
shot perpendicularly into a wall at a speed of 4.00 m/s. Each ball
sticks to the wall. Figure 9-49 gives the magnitude F of the force on
the wall as a function of time t for two of the snowball impacts.
Impacts occur with a repetition time interval �tr � 50.0 ms, last a du-
ration time interval �td � 10 ms, and produce isosceles triangles on
the graph, with each impact reaching a force maximum Fmax � 200 N.
During each impact, what are the magnitudes of (a) the impulse and
(b) the average force on the wall? (c) During a time interval of many
impacts, what is the magnitude of the average force on the wall?

SSM

are the magnitudes of the (c) impulse
and (d) average force (assuming the
same stopping time)?

••32 A 5.0 kg toy car can move
along an x axis; Fig. 9-50 gives Fx of
the force acting on the car, which be-
gins at rest at time t � 0. The scale on
the Fx axis is set by In
unit-vector notation, what is at (a)
t 4.0 s and (b) t 7.0 s, and (c)
what is at t 9.0 s?

••33 Figure 9-51 shows a 0.300
kg baseball just before and just after
it collides with a bat. Just before, the
ball has velocity of magnitudev:1

�v:
��

p:
Fxs � 5.0 N.
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2 4 86

–Fxs

Fxs

t (s)

Fx (N)

Figure 9-50 Problem 32.

θ 
v2

v1

1

y

x

Figure 9-51 Problem 33.
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Figure 9-52 Problem 34. Lizard running across water.

••31 Jumping up before the elevator hits. After the cable
snaps and the safety system fails, an elevator cab free-falls from a
height of 36 m. During the collision at the bottom of the elevator
shaft, a 90 kg passenger is stopped in 5.0 ms. (Assume that neither the
passenger nor the cab rebounds.) What are the magnitudes of the (a)
impulse and (b) average force on the passenger during the collision?
If the passenger were to jump upward with a speed of 7.0 m/s relative
to the cab floor just before the cab hits the bottom of the shaft, what

tude and (b) direction (relative to the positive direction of the x
axis) of the impulse on the ball from the bat? What are the (c)
magnitude and (d) direction of the average force on the ball from
the bat?

••34 Basilisk lizards can run across the top of a water sur-
face (Fig. 9-52). With each step, a lizard first slaps its foot against
the water and then pushes it down into the water rapidly enough to
form an air cavity around the top of the foot. To avoid having to
pull the foot back up against water drag in order to complete the
step, the lizard withdraws the foot before water can flow into the
air cavity. If the lizard is not to sink, the average upward impulse
on the lizard during this full action of slap, downward push, and
withdrawal must match the downward impulse due to the gravita-
tional force. Suppose the mass of a basilisk lizard is 90.0 g, the mass
of each foot is 3.00 g, the speed of a foot as it slaps the water is
1.50 m/s, and the time for a single step is 0.600 s. (a) What is the
magnitude of the impulse on the lizard during the slap? (Assume
this impulse is directly upward.) (b) During the 0.600 s duration of
a step, what is the downward impulse on the lizard due to the gravi-
tational force? (c) Which action, the slap or the push, provides the
primary support for the lizard, or are they approximately equal in
their support?
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μ  = 0 μ L μ R
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Figure 9-57 Problem 44.

••35 Figure 9-53 shows an
approximate plot of force mag-
nitude F versus time t during the
collision of a 58 g Superball with
a wall. The initial velocity of the
ball is 34 m/s perpendicular to
the wall; the ball rebounds di-
rectly back with approximately
the same speed, also perpendi-
cular to the wall. What is Fmax,
the maximum magnitude of the
force on the ball from the wall during the collision?

••36 A 0.25 kg puck is initially stationary on an ice surface with
negligible friction. At time t � 0, a horizontal force begins to
move the puck. The force is given by � (12.0 � , with 
in newtons and t in seconds, and it acts until its magnitude is
zero. (a) What is the magnitude of the impulse on the puck from
the force between t � 0.500 s and t � 1.25 s? (b) What is the
change in momentum of the puck between t � 0 and the instant
at which F � 0?

••37 A soccer player kicks a soccer ball of mass 0.45 kg that
is initially at rest. The foot of the player is in contact with the ball
for 3.0 � 10�3 s, and the force of the kick is given by

F(t) � [(6.0 � 106)t � (2.0 � 109)t2] N

for 0 	 t 	 3.0 � 10�3 s, where t is in seconds. Find the magnitudes
of (a) the impulse on the ball due to the kick, (b) the average force
on the ball from the player’s foot during the period of contact,
(c) the maximum force on the ball from the player’s foot during the
period of contact, and (d) the ball’s velocity immediately after it
loses contact with the player’s foot.

••38 In the overhead view of Fig.
9-54, a 300 g ball with a speed v of
6.0 m/s strikes a wall at an angle u
of 30� and then rebounds with the
same speed and angle. It is in con-
tact with the wall for 10 ms. In unit-
vector notation, what are (a) the
impulse on the ball from the wall
and (b) the average force on the wall from the ball?
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locity that the explosion gives the rest of the rocket. (2) Next, at
time t � 0.80 s, block R is shot to the right with a speed of 3.00 m/s
relative to the velocity that block C then has. At t � 2.80 s, what
are (a) the velocity of block C and (b) the position of its center?

••42 An object, with mass m and speed v relative to an observer,
explodes into two pieces, one three times as massive as the other;
the explosion takes place in deep space. The less massive piece
stops relative to the observer. How much kinetic energy is added
to the system during the explosion, as measured in the observer’s
reference frame?

••43 In the Olympiad of 708 B.C., some athletes competing in
the standing long jump used handheld weights called halteres to
lengthen their jumps (Fig. 9-56).The weights were swung up in front
just before liftoff and then swung down and thrown backward dur-
ing the flight. Suppose a modern 78 kg long jumper similarly uses
two 5.50 kg halteres, throwing them horizontally to the rear at his
maximum height such that their horizontal velocity is zero rela-
tive to the ground. Let his liftoff velocity be m/s
with or without the halteres, and assume that he lands at the liftoff
level. What distance would the use of the halteres add to his range?  

v: � (9.5î � 4.0ĵ)

Module 9-5 Conservation of Linear Momentum
•39 A 91 kg man lying on a surface of negligible friction
shoves a 68 g stone away from himself, giving it a speed of 4.0 m/s.
What speed does the man acquire as a result?

•40 A space vehicle is traveling at 4300 km/h relative to Earth
when the exhausted rocket motor (mass 4m) is disengaged and
sent backward with a speed of 82 km/h relative to the command
module (mass m). What is the speed of the command module rel-
ative to Earth just after the separation?

••41 Figure 9-55 shows a two-ended “rocket” that is initially sta-
tionary on a frictionless floor, with its center at the origin of an x
axis.The rocket consists of a central block C (of mass M � 6.00 kg)
and blocks L and R (each of mass m � 2.00 kg) on the left and
right sides. Small explosions can
shoot either of the side blocks away
from block C and along the x axis.
Here is the sequence: (1) At time t �

0, block L is shot to the left with a
speed of 3.00 m/s relative to the ve-
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Figure 9-54 Problem 38.
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Figure 9-55 Problem 41.

••44 In Fig. 9-57, a stationary block explodes into two pieces L
and R that slide across a frictionless floor and then into regions with
friction, where they stop. Piece L, with a mass of 2.0 kg, encounters a
coefficient of kinetic friction mL � 0.40 and slides to a stop in distance
dL � 0.15 m. Piece R encounters a coefficient of kinetic friction mR �
0.50 and slides to a stop in distance dR � 0.25 m. What was the mass
of the block?
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Figure 9-56 Problem 43.
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Figure 9-53 Problem 35.

••45 A 20.0 kg body is moving through space in the
positive direction of an x axis with a speed of 200 m/s when, due
to an internal explosion, it breaks into three parts. One part, with a
mass of 10.0 kg, moves away from the point of explosion with
a speed of 100 m/s in the positive y direction. A second part, with a
mass of 4.00 kg, moves in the negative x direction with a speed of
500 m/s. (a) In unit-vector notation, what is the velocity of the third
part? (b) How much energy is released in the explosion? Ignore ef-
fects due to the gravitational force.

••46 A 4.0 kg mess kit sliding on a frictionless surface explodes
into two 2.0 kg parts: 3.0 m/s, due north, and 5.0 m/s, 30� north of
east.What is the original speed of the mess kit?

WWWSSM
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••47 A vessel at rest at the origin of an xy coordinate system ex-
plodes into three pieces. Just after the explosion, one piece, of mass
m, moves with velocity (�30 m/s) and a second piece, also of mass
m, moves with velocity (�30 m/s) . The third piece has mass 3m.
Just after the explosion, what are the (a) magnitude and (b) direc-
tion of the velocity of the third piece?

•••48 Particle A and particle B are held together with a com-
pressed spring between them. When they are released, the spring
pushes them apart, and they then fly off in opposite directions, free of
the spring. The mass of A is 2.00 times the mass of B, and the energy
stored in the spring was 60 J. Assume that the spring has negligible
mass and that all its stored energy is transferred to the particles.
Once that transfer is complete, what are the kinetic energies of (a)
particle A and (b) particle B?

Module 9-6 Momentum and Kinetic Energy in Collisions
•49 A bullet of mass 10 g strikes a ballistic pendulum of mass
2.0 kg. The center of mass of the pendulum rises a vertical distance
of 12 cm. Assuming that the bullet remains embedded in the pen-
dulum, calculate the bullet’s initial speed.

•50 A 5.20 g bullet moving at 672 m/s strikes a 700 g wooden
block at rest on a frictionless surface. The bullet emerges, traveling
in the same direction with its speed reduced to 428 m/s. (a) What is
the resulting speed of the block? (b) What is the speed of the
bullet–block center of mass?

••51 In Fig. 9-58a, a 3.50 g bullet is fired horizontally at two
blocks at rest on a frictionless table.The bullet passes through block
1 (mass 1.20 kg) and embeds itself in block 2 (mass 1.80 kg). The
blocks end up with speeds v1 � 0.630 m/s and v2 � 1.40 m/s (Fig.
9-58b). Neglecting the material removed from block 1 by the bullet,
find the speed of the bullet as it (a) leaves and (b) enters block 1.

ĵ
î

collisions (CVC). (b) What percent of the original kinetic energy is
lost if the car hits a 300 kg camel? (c) Generally, does the percent
loss increase or decrease if the animal mass decreases?

••54 A completely inelastic collision occurs between two balls of
wet putty that move directly toward each other along a vertical
axis. Just before the collision, one ball, of mass 3.0 kg, is moving up-
ward at 20 m/s and the other ball, of mass 2.0 kg, is moving down-
ward at 12 m/s. How high do the combined two balls of putty rise
above the collision point? (Neglect air drag.)

••55 A 5.0 kg block with a speed of 3.0 m/s collides with a 10
kg block that has a speed of 2.0 m/s in the same direction.After the
collision, the 10 kg block travels in the original direction with a
speed of 2.5 m/s. (a) What is the velocity of the 5.0 kg block imme-
diately after the collision? (b) By how much does the total kinetic
energy of the system of two blocks change because of the colli-
sion? (c) Suppose, instead, that the 10 kg block ends up with a
speed of 4.0 m/s. What then is the change in the total kinetic en-
ergy? (d) Account for the result you obtained in (c).

••56 In the “before” part of Fig. 9-60, car A (mass 1100 kg) is
stopped at a traffic light when it is rear-ended by car B (mass
1400 kg). Both cars then slide with locked wheels until the fric-
tional force from the slick road (with a low mk of 0.13) stops them,
at distances dA � 8.2 m and dB � 6.1 m. What are the speeds of (a)
car A and (b) car B at the start of the sliding, just after the colli-
sion? (c) Assuming that linear momentum is conserved during
the collision, find the speed of car B just before the collision.
(d) Explain why this assumption may be invalid.

ILW

••52 In Fig. 9-59, a 10 g bullet
moving directly upward at 1000 m/s
strikes and passes through the cen-
ter of mass of a 5.0 kg block initially
at rest. The bullet emerges from the
block moving directly upward at 400
m/s. To what maximum height does
the block then rise above its initial
position?

••53 In Anchorage, collisions of a vehicle with a moose are so
common that they are referred to with the abbreviation MVC.
Suppose a 1000 kg car slides into a stationary 500 kg moose on a
very slippery road, with the moose being thrown through the wind-
shield (a common MVC result). (a) What percent of the original
kinetic energy is lost in the collision to other forms of energy? A
similar danger occurs in Saudi Arabia because of camel–vehicle
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Figure 9-58 Problem 51.
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Figure 9-59 Problem 52.

••57 In Fig. 9-61, a ball of mass
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Figure 9-61 Problem 57.

m � 60 g is shot with speed vi 22
m/s into the barrel of a spring gun of
mass M 240 g initially at rest on a
frictionless surface.The ball sticks in

�

�

the barrel at the point of maximum compression of the spring.
Assume that the increase in thermal energy due to friction be-
tween the ball and the barrel is negligible. (a) What is the speed of
the spring gun after the ball stops in the barrel? (b) What fraction
of the initial kinetic energy of the ball is stored in the spring?

•••58 In Fig. 9-62, block 2 (mass 1.0
kg) is at rest on a frictionless surface
and touching the end of an un-
stretched spring of spring constant
200 N/m.The other end of the spring
is fixed to a wall. Block 1 (mass 2.0 kg), traveling at speed v1 � 4.0
m/s, collides with block 2, and the two blocks stick together.When the
blocks momentarily stop, by what distance is the spring compressed?

1 2 
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Figure 9-62 Problem 58.
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•••59 In Fig. 9-63, block 1 (mass 2.0 kg) is moving rightward at
10 m/s and block 2 (mass 5.0 kg) is moving rightward at 3.0 m/s.
The surface is frictionless, and a spring with a spring constant of
1120 N/m is fixed to block 2.When the blocks collide, the compres-
sion of the spring is maximum at the instant the blocks have the
same velocity. Find the maximum compression.

ILW friction is 0.50; there they stop. How far into that region do (a)
block 1 and (b) block 2 slide?

••67 In Fig. 9-66, particle 1 of mass
m1 � 0.30 kg slides rightward along
an x axis on a frictionless floor with a
speed of 2.0 m/s.When it reaches x
0, it undergoes a one-dimensional
elastic collision with stationary parti-
cle 2 of mass m2 0.40 kg.When par-
ticle 2 then reaches a wall at xw 70 cm, it bounces from the wall
with no loss of speed. At what position on the x axis does particle 2
then collide with particle 1?

••68 In Fig. 9-67, block 1 of mass m1 slides from rest along a
frictionless ramp from height h 2.50 m and then collides with
stationary block 2, which has mass m2 � 2.00m1.After the collision,
block 2 slides into a region where the coefficient of kinetic friction
mk is 0.500 and comes to a stop in distance d within that region.
What is the value of distance d if the collision is (a) elastic and (b)
completely inelastic?

�

�
�

�

Module 9-7 Elastic Collisions in One Dimension
•60 In Fig. 9-64, block A (mass 1.6
kg) slides into block B (mass 2.4 kg),
along a frictionless surface. The direc-
tions of three velocities before (i) and
after ( f ) the collision are indicated;
the corresponding speeds are vAi

5.5 m/s, vBi 2.5 m/s, and vBf 4.9
m/s. What are the (a) speed and (b)
direction (left or right) of velocity

? (c) Is the collision elastic?

•61 A cart with mass 340 g
moving on a frictionless linear air track at an initial speed of 1.2 m/s
undergoes an elastic collision with an initially stationary cart of un-
known mass. After the collision, the first cart continues in its origi-
nal direction at 0.66 m/s. (a) What is the mass of the second cart?
(b) What is its speed after impact? (c) What is the speed of the two-
cart center of mass?

•62 Two titanium spheres approach each other head-on with the
same speed and collide elastically. After the collision, one of the
spheres, whose mass is 300 g, remains at rest. (a) What is the mass
of the other sphere? (b) What is the speed of the two-sphere center
of mass if the initial speed of each sphere is 2.00 m/s?

••63 Block 1 of mass m1 slides along a frictionless floor and into a
one-dimensional elastic collision with stationary block 2 of mass
m2 � 3m1. Prior to the collision, the center of mass of the two-
block system had a speed of 3.00 m/s. Afterward, what are the
speeds of (a) the center of mass and (b) block 2?

••64 A steel ball of mass 0.500 kg
is fastened to a cord that is 70.0 cm long
and fixed at the far end.The ball is then
released when the cord is horizontal
(Fig. 9-65). At the bottom of its path,
the ball strikes a 2.50 kg steel block ini-
tially at rest on a frictionless surface.
The collision is elastic. Find (a) the
speed of the ball and (b) the speed of
the block, both just after the collision.

••65 A body of mass 2.0 kg makes an elastic collision with
another body at rest and continues to move in the original
direction but with one-fourth of its original speed. (a) What is the
mass of the other body? (b) What is the speed of the two-body cen-
ter of mass if the initial speed of the 2.0 kg body was 4.0 m/s?

••66 Block 1, with mass m1 and speed 4.0 m/s, slides along an x
axis on a frictionless floor and then undergoes a one-dimensional
elastic collision with stationary block 2, with mass m2 � 0.40m1.The
two blocks then slide into a region where the coefficient of kinetic
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Figure 9-63 Problem 59.
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Figure 9-66 Problem 67.

•••69 A small ball of
mass m is aligned above a larger ball
of mass M � 0.63 kg (with a slight
separation, as with the baseball and
basketball of Fig. 9-68a), and the
two are dropped simultaneously
from a height of h � 1.8 m.
(Assume the radius of each ball is
negligible relative to h.) (a) If the
larger ball rebounds elastically
from the floor and then the small
ball rebounds elastically from the
larger ball, what value of m results
in the larger ball stopping when it
collides with the small ball? (b)
What height does the small ball
then reach (Fig. 9-68b)?

•••70 In Fig. 9-69, puck 1 of mass m1 � 0.20 kg is sent sliding
across a frictionless lab bench, to undergo a one-dimensional elas-
tic collision with stationary puck 2. Puck 2 then slides off the bench
and lands a distance d from the base of the bench. Puck 1 rebounds
from the collision and slides off the opposite edge of the bench,
landing a distance 2d from the base of the bench. What is the mass
of puck 2? (Hint: Be careful with signs.)
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Module 9-8 Collisions in Two Dimensions
••71 In Fig. 9-21, projectile particle 1 is an alpha particle and
target particle 2 is an oxygen nucleus. The alpha particle is scattered
at angle u1 64.0� and the oxygen nucleus recoils with speed 1.20 �
105 m/s and at angle u2 51.0�. In atomic mass units, the mass of the
alpha particle is 4.00 u and the mass of the oxygen nucleus is 16.0 u.
What are the (a) final and (b) initial speeds of the alpha particle?

••72 Ball B, moving in the positive direction of an x axis at speed
v, collides with stationary ball A at the origin. A and B have differ-
ent masses.After the collision, B moves in the negative direction of
the y axis at speed v/2. (a) In what direction does A move?
(b) Show that the speed of A cannot be determined from the given
information.

••73 After a completely inelastic collision, two objects of the same
mass and same initial speed move away together at half their initial
speed. Find the angle between the initial velocities of the objects.

••74 Two 2.0 kg bodies, A and B, collide. The velocities before the
collision are and m/s.After
the collision, What are (a) the final velocity
of B and (b) the change in the total kinetic energy (including sign)?

••75 A projectile proton with a speed of 500 m/s collides elasti-
cally with a target proton initially at rest. The two protons then
move along perpendicular paths, with the projectile path at 60�
from the original direction. After the collision, what are the speeds
of (a) the target proton and (b) the projectile proton?

Module 9-9 Systems with Varying Mass: A Rocket
•76 A 6090 kg space probe moving nose-first toward Jupiter at
105 m/s relative to the Sun fires its rocket engine, ejecting 80.0 kg
of exhaust at a speed of 253 m/s relative to the space probe.What is
the final velocity of the probe?

•77 In Fig. 9-70, two long barges are moving in the same
direction in still water, one with a speed of 10 km/h and the other
with a speed of 20 km/h. While they are passing each other, coal is
shoveled from the slower to the faster one at a rate of 1000 kg/min.
How much additional force must be provided by the driving en-
gines of (a) the faster barge and (b) the slower barge if neither is to
change speed? Assume that the shoveling is always perfectly side-
ways and that the frictional forces between the barges and the water
do not depend on the mass of the barges.
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20ĵ ) m/s.v:�A � (�5.0î �
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certain interval. What must be the rocket’s mass ratio (ratio of ini-
tial to final mass) over that interval if the rocket’s original speed
relative to the inertial frame is to be equal to (a) the exhaust speed
(speed of the exhaust products relative to the rocket) and (b) 2.0
times the exhaust speed?

•79 A rocket that is in deep space and initially at rest
relative to an inertial reference frame has a mass of 2.55 105 kg,
of which 1.81 105 kg is fuel. The rocket engine is then fired for
250 s while fuel is consumed at the rate of 480 kg/s. The speed of
the exhaust products relative to the rocket is 3.27 km/s. (a) What is
the rocket’s thrust? After the 250 s firing, what are (b) the mass
and (c) the speed of the rocket?

Additional Problems
80 An object is tracked by a radar station and determined to have
a position vector given by � (3500 � 160t) � 2700 � 300 , with

in meters and t in seconds. The radar station’s x axis points east,
its y axis north, and its z axis vertically up. If the object is a 250 kg
meteorological missile, what are (a) its linear momentum, (b) its
direction of motion, and (c) the net force on it?

81 The last stage of a rocket, which is traveling at a speed of
7600 m/s, consists of two parts that are clamped together: a rocket
case with a mass of 290.0 kg and a payload capsule with a mass of
150.0 kg. When the clamp is released, a compressed spring causes
the two parts to separate with a relative speed of 910.0 m/s. What
are the speeds of (a) the rocket case and (b) the payload after they
have separated? Assume that all velocities are along the same line.
Find the total kinetic energy of the two parts (c) before and (d) after
they separate. (e) Account for the difference.

82 Pancake collapse of a tall
building. In the section of a tall
building shown in Fig. 9-71a, the in-
frastructure of any given floor K
must support the weight W of all
higher floors. Normally the infra-
structure is constructed with a
safety factor s so that it can with-
stand an even greater downward
force of sW. If, however, the support
columns between K and L suddenly
collapse and allow the higher floors to free-fall together onto floor
K (Fig. 9-71b), the force in the collision can exceed sW and, after a
brief pause, cause K to collapse onto floor J, which collapses on
floor I, and so on until the ground is reached. Assume that the
floors are separated by and have the same mass.Also as-
sume that when the floors above K free-fall onto K, the collision
lasts 1.5 ms. Under these simplified conditions, what value must the
safety factor s exceed to prevent pancake collapse of the building?

83 “Relative” is an important
word. In Fig. 9-72, block L of mass
mL � 1.00 kg and block R of mass
mR � 0.500 kg are held in place with
a compressed spring between them.
When the blocks are released, the spring sends them sliding across
a frictionless floor. (The spring has negligible mass and falls to the
floor after the blocks leave it.) (a) If the spring gives block L a re-
lease speed of 1.20 m/s relative to the floor, how far does block R
travel in the next 0.800 s? (b) If, instead, the spring gives block L a
release speed of 1.20 m/s relative to the velocity that the spring
gives block R, how far does block R travel in the next 0.800 s?

d � 4.0 m
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Figure 9-72 Problem 83.

•78 Consider a rocket that is in deep space and at rest relative to
an inertial reference frame. The rocket’s engine is to be fired for a
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84 Figure 9-73 shows an overhead
view of two particles sliding at constant
velocity over a frictionless surface. The
particles have the same mass and the
same initial speed v � 4.00 m/s, and they
collide where their paths intersect. An
x axis is arranged to bisect the angle be-
tween their incoming paths, such that
u � 40.0�. The region to the right of the
collision is divided into four lettered
sections by the x axis and four numbered dashed lines. In what re-
gion or along what line do the particles travel if the collision is (a)
completely inelastic, (b) elastic, and (c) inelastic? What are their fi-
nal speeds if the collision is (d) completely inelastic and (e) elastic?

85 Speed deamplifier. In Fig.
9-74, block 1 of mass m1 slides along
an x axis on a frictionless floor at
speed 4.00 m/s. Then it undergoes a
one-dimensional elastic collision
with stationary block 2 of mass m2 �
2.00m1. Next, block 2 undergoes a one-dimensional elastic collision
with stationary block 3 of mass m3 � 2.00m2. (a) What then is the
speed of block 3? Are (b) the speed, (c) the kinetic energy, and (d)
the momentum of block 3 greater than, less than, or the same as
the initial values for block 1? 

origin with linear momentum (�6.4 � 10�23 kg 
m/s) . What are
the (a) magnitude and (b) direction of the linear momentum of the
daughter nucleus? (c) If the daughter nucleus has a mass of 5.8 �
10�26 kg, what is its kinetic energy?

91 A 75 kg man rides on a 39 kg cart moving at a velocity of 2.3 m/s.
He jumps off with zero horizontal velocity relative to the ground.
What is the resulting change in the cart’s velocity, including sign?

92 Two blocks of masses 1.0 kg and 3.0 kg are connected by a
spring and rest on a frictionless surface. They are given velocities
toward each other such that the 1.0 kg block travels initially at
1.7 m/s toward the center of mass, which remains at rest. What is
the initial speed of the other block?

93 A railroad freight car of mass 3.18 � 104 kg collides
with a stationary caboose car. They couple together, and 27.0% of
the initial kinetic energy is transferred to thermal energy, sound,
vibrations, and so on. Find the mass of the caboose.

94 An old Chrysler with mass 2400 kg is moving along a straight
stretch of road at 80 km/h. It is followed by a Ford with mass 1600
kg moving at 60 km/h. How fast is the center of mass of the two
cars moving?

95 In the arrangement of Fig. 9-21, billiard ball 1 moving at a
speed of 2.2 m/s undergoes a glancing collision with identical bil-
liard ball 2 that is at rest. After the collision, ball 2 moves at speed
1.1 m/s, at an angle of u2 � 60�.What are (a) the magnitude and (b)
the direction of the velocity of ball 1 after the collision? (c) Do the
given data suggest the collision is elastic or inelastic?

96 A rocket is moving away from the solar system at a speed of
6.0 � 103 m/s. It fires its engine, which ejects exhaust with a speed
of 3.0 � 103 m/s relative to the rocket. The mass of the rocket at
this time is 4.0 � 104 kg, and its acceleration is 2.0 m/s2. (a) What is
the thrust of the engine? (b) At what rate, in kilograms per second,
is exhaust ejected during the firing?
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The velocity of ball 1 has magnitude v0 � 10 m/s and is directed at
the contact point of balls 1 and 2. After the collision, what are the
(a) speed and (b) direction of the velocity of ball 2, the (c) speed
and (d) direction of the velocity of ball 3, and the (e) speed and (f)
direction of the velocity of ball 1? (Hint: With friction absent, each
impulse is directed along the line connecting the centers of the col-
liding balls, normal to the colliding surfaces.)

98 A 0.15 kg ball hits a wall with a velocity of (5.00 m/s) � (6.50
m/s) � (4.00 m/s) . It rebounds from the wall with a velocity of
(2.00 m/s) (3.50 m/s) ( 3.20 m/s) . What are
(a) the change in the ball’s momentum, (b) the im-
pulse on the ball, and (c) the impulse on the wall?

99 In Fig. 9-77, two identical containers of sugar
are connected by a cord that passes over a friction-
less pulley. The cord and pulley have negligible
mass, each container and its sugar together have a
mass of 500 g, the centers of the containers are sepa-
rated by 50 mm, and the containers are held fixed at
the same height. What is the horizontal distance be-
tween the center of container 1 and the center
of mass of the two-container system (a) initially and

k̂�ĵ �î �
k̂ĵ

î

97 The three balls in the
overhead view of Fig. 9-76 are
identical. Balls 2 and 3 touch
each other and are aligned per-
pendicular to the path of ball 1.

Figure 9-77
Problem 99.
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sion with stationary block 2 of mass m2 � 0.500m1. Next, block 2 un-
dergoes a one-dimensional elastic collision with stationary block 3
of mass m3 � 0.500m2. (a) What then is the speed of block 3? Are (b)
the speed, (c) the kinetic energy, and (d) the momentum of block 3
greater than, less than, or the same as the initial values for block 1?

87 A ball having a mass of 150 g strikes a wall with a speed of
5.2 m/s and rebounds with only 50% of its initial kinetic energy. (a)
What is the speed of the ball immediately after rebounding? (b)
What is the magnitude of the impulse on the wall from the ball? (c) If
the ball is in contact with the wall for 7.6 ms, what is the magnitude of
the average force on the ball from the wall during this time interval?

88 A spacecraft is separated into two parts by detonating the ex-
plosive bolts that hold them together. The masses of the parts are
1200 kg and 1800 kg; the magnitude of the impulse on each part
from the bolts is 300 N 
s. With what relative speed do the two
parts separate because of the detonation?

89 A 1400 kg car moving at 5.3 m/s is initially traveling
north along the positive direction of a y axis. After completing a
90� right-hand turn in 4.6 s, the inattentive operator drives into a
tree, which stops the car in 350 ms. In unit-vector notation, what is
the impulse on the car (a) due to the turn and (b) due to the colli-
sion? What is the magnitude of the average force that acts on the
car (c) during the turn and (d) during the collision? (e) What is the
direction of the average force during the turn?

90 A certain radioactive (parent) nucleus transforms to a dif-
ferent (daughter) nucleus by emitting an electron and a neutrino.
The parent nucleus was at rest at the origin of an xy coordinate sys-
tem. The electron moves away from the origin with linear momen-
tum (�1.2 � 10�22 kg 
m/s) ; the neutrino moves away from theî
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86 Speed amplifier. In Fig. 9-75,
block 1 of mass m1 slides along an x
axis on a frictionless floor with a
speed of v1i 4.00 m/s. Then it under-
goes a one-dimensional elastic colli-
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(b) after 20 g of sugar is transferred from container 1 to container
2? After the transfer and after the containers are released, (c) in
what direction and (d) at what acceleration magnitude does the
center of mass move?

100 In a game of pool, the cue ball strikes another ball of the
same mass and initially at rest. After the collision, the cue ball
moves at 3.50 m/s along a line making an angle of 22.0� with the
cue ball’s original direction of motion, and the second ball has a
speed of 2.00 m/s. Find (a) the angle between the direction of mo-
tion of the second ball and the original direction of motion of the
cue ball and (b) the original speed of the cue ball. (c) Is kinetic en-
ergy (of the centers of mass, don’t consider the rotation) con-
served?

101 In Fig. 9-78, a 3.2 kg box of
running shoes slides on a horizontal
frictionless table and collides with a
2.0 kg box of ballet slippers initially
at rest on the edge of the table, at
height h � 0.40 m. The speed of the
3.2 kg box is 3.0 m/s just before the
collision. If the two boxes stick to-
gether because of packing tape on their
sides, what is their kinetic energy just before
they strike the floor?

102 In Fig. 9-79, an 80 kg man is on a lad-
der hanging from a balloon that has a total
mass of 320 kg (including the basket passen-
ger). The balloon is initially stationary rela-
tive to the ground. If the man on the ladder
begins to climb at 2.5 m/s relative to the lad-
der, (a) in what direction and (b) at what
speed does the balloon move? (c) If the man
then stops climbing, what is the speed of the
balloon?

103 In Fig. 9-80, block 1 of mass m1 � 6.6 kg
is at rest on a long frictionless table that is up
against a wall. Block 2 of mass m2 is placed
between block 1 and the wall and sent sliding
to the left, toward block 1, with constant
speed v2i. Find the value of m2 for which both
blocks move with the same velocity after block 2 has collided once
with block 1 and once with the wall.Assume all collisions are elastic
(the collision with the wall does not change the speed of block 2).

boat will initially touch the dock, as in Fig. 9-81; the boat can slide
through the water without significant resistance; both the car and
the boat can be approximated as uniform in their mass distribu-
tion. Determine what the width of the gap will be just as the car is
about to make the jump.

105 A 3.0 kg object moving at 8.0 m/s in the positive direc-
tion of an x axis has a one-dimensional elastic collision with an ob-
ject of mass M, initially at rest. After the collision the object of
mass M has a velocity of 6.0 m/s in the positive direction of the
axis.What is mass M?

106 A 2140 kg railroad flatcar, which can move with negligible
friction, is motionless next to a platform. A 242 kg sumo wrestler
runs at 5.3 m/s along the platform (parallel to the track) and then
jumps onto the flatcar. What is the speed of the flatcar if he then
(a) stands on it, (b) runs at 5.3 m/s relative to it in his original direc-
tion, and (c) turns and runs at 5.3 m/s relative to the flatcar oppo-
site his original direction?

107 A 6100 kg rocket is set for vertical firing from the
ground. If the exhaust speed is 1200 m/s, how much gas must be
ejected each second if the thrust (a) is to equal the magnitude of
the gravitational force on the rocket and (b) is to give the rocket an
initial upward acceleration of 21 m/s2?

108 A 500.0 kg module is attached to a 400.0 kg shuttle craft,
which moves at 1000 m/s relative to the stationary main spaceship.
Then a small explosion sends the module backward with speed
100.0 m/s relative to the new speed of the shuttle craft. As meas-
ured by someone on the main spaceship, by what fraction did the
kinetic energy of the module and shuttle craft increase because of
the explosion?

109 (a) How far is the center of mass of the Earth–Moon
system from the center of Earth? (Appendix C gives the masses of
Earth and the Moon and the distance between the two.) (b) What
percentage of Earth’s radius is that distance?

110 A 140 g ball with speed 7.8 m/s strikes a wall perpendicu-
larly and rebounds in the opposite direction with the same speed.
The collision lasts 3.80 ms. What are the magnitudes of the (a) im-
pulse and (b) average force on the wall from the ball during the
elastic collision?

111 A rocket sled with a mass of 2900 kg moves at 250 m/s
on a set of rails. At a certain point, a scoop on the sled dips into a
trough of water located between the tracks and scoops water into
an empty tank on the sled. By applying the principle of conserva-
tion of linear momentum, determine the speed of the sled after
920 kg of water has been scooped up. Ignore any retarding force on
the scoop.

112 A pellet gun fires ten 2.0 g pellets per second with a
speed of 500 m/s. The pellets are stopped by a rigid wall. What are
(a) the magnitude of the momentum of each pellet, (b) the ki-
netic energy of each pellet, and (c) the magnitude of the average
force on the wall from the stream of pellets? (d) If each pellet is
in contact with the wall for 0.60 ms, what is the magnitude of the
average force on the wall from each pellet during contact? (e)
Why is this average force so different from the average force cal-
culated in (c)?

113 A railroad car moves under a grain elevator at a constant
speed of 3.20 m/s. Grain drops into the car at the rate of 540 kg/min.
What is the magnitude of the force needed to keep the car moving
at constant speed if friction is negligible?
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104 The script for an action movie calls for a small race car (of
mass 1500 kg and length 3.0 m) to accelerate along a flattop boat
(of mass 4000 kg and length 14 m), from one end of the boat to the
other, where the car will then jump
the gap between the boat and a
somewhat lower dock. You are the
technical advisor for the movie. The
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Figure 9-81 Problem 104.
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Figure 9-84 Problem 123.

114 Figure 9-82 shows a uniform square plate of edge length 
6d � 6.0 m from which a square piece of edge length 2d has been
removed.What are (a) the x coordinate and (b) the y coordinate of
the center of mass of the remaining piece?

rates the body into two parts, each of 4.0 kg, and increases the total
kinetic energy by 16 J. The forward part continues to move in the
original direction of motion. What are the speeds of (a) the rear
part and (b) the forward part?

121 An electron undergoes a one-dimensional elastic collision
with an initially stationary hydrogen atom. What percentage of the
electron’s initial kinetic energy is transferred to kinetic energy of
the hydrogen atom? (The mass of the hydrogen atom is 1840 times
the mass of the electron.)

122 A man (weighing 915 N) stands on a long railroad flatcar
(weighing 2415 N) as it rolls at 18.2 m/s in the positive direction of
an x axis, with negligible friction. Then the man runs along the flat-
car in the negative x direction at 4.00 m/s relative to the flatcar.
What is the resulting increase in the speed of the flatcar?

123 An unmanned space probe (of mass m and speed v relative to
the Sun) approaches the planet Jupiter (of mass M and speed VJ rel-
ative to the Sun) as shown in Fig. 9-84. The spacecraft rounds the
planet and departs in the opposite direction. What is its speed (in
kilometers per second), relative to the Sun, after this slingshot en-
counter, which can be analyzed as a collision? Assume v � 10.5 km/s
and VJ � 13.0 km/s (the orbital speed of Jupiter).The mass of Jupiter
is very much greater than the mass of the spacecraft (M m).�

115 At time t 0, force N acts on an
initially stationary particle of mass 2.00 10�3 kg and force

N acts on an initially stationary particle of
mass 4.00 10�3 kg. From time t 0 to t 2.00 ms, what are the
(a) magnitude and (b) angle (relative to the positive direction of
the x axis) of the displacement of the center of mass of the two-
particle system? (c) What is the kinetic energy of the center of
mass at t � 2.00 ms?

116 Two particles P and Q are released from rest 1.0 m apart. P has
a mass of 0.10 kg, and Q a mass of 0.30 kg. P and Q attract each other
with a constant force of 1.0 � 10�2 N. No external forces act on the
system. (a) What is the speed of the center of mass of P and Q when
the separation is 0.50 m? (b) At what distance from P’s original posi-
tion do the particles collide?

117 A collision occurs between a 2.00 kg particle traveling with
velocity and a 4.00 kg particle
traveling with velocity . The colli-
sion connects the two particles. What then is their velocity in (a)
unit-vector notation and as a (b) magnitude and (c) angle?

118 In the two-sphere arrangement of Fig. 9-20, assume that
sphere 1 has a mass of 50 g and an initial height of h1 � 9.0 cm, and
that sphere 2 has a mass of 85 g. After sphere 1 is released and col-
lides elastically with sphere 2, what height is reached by (a) sphere
1 and (b) sphere 2? After the next (elastic) collision, what height is
reached by (c) sphere 1 and (d) sphere 2? (Hint: Do not use
rounded-off values.)

119 In Fig. 9-83, block 1 slides along
an x axis on a frictionless floor with a
speed of 0.75 m/s. When it reaches sta-
tionary block 2, the two blocks undergo
an elastic collision. The following table
gives the mass and length of the (uni-
form) blocks and also the locations of their centers at time t � 0.
Where is the center of mass of the two-block system located (a) at 
t � 0, (b) when the two blocks first touch, and (c) at t � 4.0 s?

Block Mass (kg) Length (cm) Center at t � 0

1 0.25 5.0 x � �1.50 m
2 0.50 6.0 x � 0

120 A body is traveling at 2.0 m/s along the positive direction of
an x axis; no net force acts on the body. An internal explosion sepa-
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124 A 0.550 kg ball falls directly down onto concrete, hitting it
with a speed of 12.0 m/s and rebounding directly upward with a
speed of 3.00 m/s. Extend a y axis upward. In unit-vector notation,
what are (a) the change in the ball’s momentum, (b) the impulse
on the ball, and (c) the impulse on the concrete?

125 An atomic nucleus at rest at the origin of an xy coordinate
system transforms into three particles. Particle 1, mass 16.7 � 10�27

kg, moves away from the origin at velocity (6.00 � 106 m/s) ; particle
2, mass 8.35 � 10�27 kg, moves away at velocity (�8.00 � 106 m/s) .
(a) In unit-vector notation, what is the linear momentum of the
third particle, mass 11.7 � 10�27 kg? (b) How much kinetic energy
appears in this transformation?

126 Particle 1 of mass 200 g and speed 3.00 m/s undergoes a one-
dimensional collision with stationary particle 2 of mass 400 g.What
is the magnitude of the impulse on particle 1 if the collision is (a)
elastic and (b) completely inelastic?

127 During a lunar mission, it is necessary to increase the speed
of a spacecraft by 2.2 m/s when it is moving at 400 m/s relative to
the Moon. The speed of the exhaust products from the rocket en-
gine is 1000 m/s relative to the spacecraft. What fraction of the
initial mass of the spacecraft must be burned and ejected to accom-
plish the speed increase?

128 A cue stick strikes a stationary pool ball, with an average
force of 32 N over a time of 14 ms. If the ball has mass 0.20 kg, what
speed does it have just after impact?

ĵ
î

–1.50 m 0 
x

1 2

Figure 9-83 Problem 119.
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Rotation

10-1 ROTATIONAL VARIABLES

After reading this module, you should be able to . . .

10.01 Identify that if all parts of a body rotate around a fixed
axis locked together, the body is a rigid body. (This chapter
is about the motion of such bodies.)

10.02 Identify that the angular position of a rotating rigid body
is the angle that an internal reference line makes with a
fixed, external reference line. 

10.03 Apply the relationship between angular displacement
and the initial and final angular positions.

10.04 Apply the relationship between average angular veloc-
ity, angular displacement, and the time interval for that dis-
placement.

10.05 Apply the relationship between average angular accel-
eration, change in angular velocity, and the time interval for
that change.

10.06 Identify that counterclockwise motion is in the positive 
direction and clockwise motion is in the negative direction.

10.07 Given angular position as a function of time, calculate the
instantaneous angular velocity at any particular time and the
average angular velocity between any two particular times.

10.08 Given a graph of angular position versus time, deter-
mine the instantaneous angular velocity at a particular time
and the average angular velocity between any two particu-
lar times.

10.09 Identify instantaneous angular speed as the magnitude
of the instantaneous angular velocity.

10.10 Given angular velocity as a function of time, calculate
the instantaneous angular acceleration at any particular
time and the average angular acceleration between any
two particular times.

10.11 Given a graph of angular velocity versus time, deter-
mine the instantaneous angular acceleration at any partic-
ular time and the average angular acceleration between
any two particular times. 

10.12 Calculate a body’s change in angular velocity by 
integrating its angular acceleration function with respect
to time.

10.13 Calculate a body’s change in angular position by inte-
grating its angular velocity function with respect to time.

● To describe the rotation of a rigid body about a fixed axis,
called the rotation axis, we assume a reference line is fixed in
the body, perpendicular to that axis and rotating with the
body. We measure the angular position u of this line 
relative to a fixed direction. When u is measured in radians,

(radian measure),

where s is the arc length of a circular path of radius r and
angle u.

● Radian measure is related to angle measure in revolutions
and degrees by

1 rev � 360� � 2p rad.

● A body that rotates about a rotation axis, changing its angu-
lar position from u1 to u2, undergoes an angular displacement

�u � u2 � u1,

where �u is positive for counterclockwise rotation and nega-
tive for clockwise rotation.

● If a body rotates through an angular displacement �u in a
time interval �t, its average angular velocity vavg is

u �
s
r

The (instantaneous) angular velocity v of the body is

Both vavg and v are vectors, with directions given by a 
right-hand rule. They are positive for counterclockwise rota-
tion and negative for clockwise rotation. The magnitude of the
body’s angular velocity is the angular speed.

● If the angular velocity of a body changes from v1 to v2 in a
time interval �t � t2 � t1, the average angular acceleration
aavg of the body is

The (instantaneous) angular acceleration a of the body is

Both aavg and a are vectors.

a �
dv

dt
.

aavg �
v2 � v1

t2 � t1
�

�v

�t
.

v �
du

dt
.

vavg �
�u

�t
.

Key Ideas

Learning Objectives
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What Is Physics?
As we have discussed, one focus of physics is motion. However, so far we
have examined only the motion of translation, in which an object moves along
a straight or curved line, as in Fig. 10-1a. We now turn to the motion of rotation,
in which an object turns about an axis, as in Fig. 10-1b.

You see rotation in nearly every machine, you use it every time you open a
beverage can with a pull tab, and you pay to experience it every time you go to an
amusement park. Rotation is the key to many fun activities, such as hitting a long
drive in golf (the ball needs to rotate in order for the air to keep it aloft longer)
and throwing a curveball in baseball (the ball needs to rotate in order for the air
to push it left or right). Rotation is also the key to more serious matters, such as
metal failure in aging airplanes.

We begin our discussion of rotation by defining the variables for the 
motion, just as we did for translation in Chapter 2. As we shall see, the vari-
ables for rotation are analogous to those for one-dimensional motion and, as
in Chapter 2, an important special situation is where the acceleration (here the
rotational acceleration) is constant. We shall also see that Newton’s second
law can be written for rotational motion, but we must use a new quantity
called torque instead of just force. Work and the work–kinetic energy
theorem can also be applied to rotational motion, but we must use a new quan-
tity called rotational inertia instead of just mass. In short, much of what we
have discussed so far can be applied to rotational motion with, perhaps, a few
changes.

Caution: In spite of this repetition of physics ideas, many students find this
and the next chapter very challenging. Instructors have a variety of reasons as
to why, but two reasons stand out: (1) There are a lot of symbols (with Greek

Figure 10-1 Figure skater Sasha Cohen in motion of (a) pure translation in a fixed
direction and (b) pure rotation about a vertical axis.
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letters) to sort out. (2) Although you are very familiar with linear motion (you
can get across the room and down the road just fine), you are probably very
unfamiliar with rotation (and that is one reason why you are willing to pay so
much for amusement park rides). If a homework problem looks like a foreign
language to you, see if translating it into the one-dimensional linear motion of
Chapter 2 helps. For example, if you are to find, say, an angular distance, tem-
porarily delete the word angular and see if you can work the problem with the
Chapter 2 notation and ideas.

Rotational Variables
We wish to examine the rotation of a rigid body about a fixed axis.A rigid body is
a body that can rotate with all its parts locked together and without any change in
its shape. A fixed axis means that the rotation occurs about an axis that does not
move. Thus, we shall not examine an object like the Sun, because the parts of the
Sun (a ball of gas) are not locked together. We also shall not examine an object
like a bowling ball rolling along a lane, because the ball rotates about a moving
axis (the ball’s motion is a mixture of rotation and translation).

Figure 10-2 shows a rigid body of arbitrary shape in rotation about a fixed
axis, called the axis of rotation or the rotation axis. In pure rotation (angular
motion), every point of the body moves in a circle whose center lies on the axis of
rotation, and every point moves through the same angle during a particular time
interval. In pure translation (linear motion), every point of the body moves in a
straight line, and every point moves through the same linear distance during a
particular time interval.

We deal now—one at a time—with the angular equivalents of the linear
quantities position, displacement, velocity, and acceleration.

Angular Position
Figure 10-2 shows a reference line, fixed in the body, perpendicular to the rotation
axis and rotating with the body. The angular position of this line is the angle of
the line relative to a fixed direction, which we take as the zero angular position.
In Fig. 10-3, the angular position u is measured relative to the positive direction of
the x axis. From geometry, we know that u is given by

(radian measure). (10-1)

Here s is the length of a circular arc that extends from the x axis (the zero angular
position) to the reference line, and r is the radius of the circle.

u �
s
r

Figure 10-2 A rigid body of arbitrary shape in pure rotation about the z axis of a coordinate
system. The position of the reference line with respect to the rigid body is arbitrary, but it is
perpendicular to the rotation axis. It is fixed in the body and rotates with the body.

z

O

Reference line 

Rotation
axis

x

y

Body This reference line is part of the body 
and perpendicular to the rotation axis. 
We use it to measure the rotation of the
body relative to a fixed direction.

Figure 10-3 The rotating rigid body of
Fig. 10-2 in cross section, viewed from
above. The plane of the cross section is
perpendicular to the rotation axis, which
now extends out of the page, toward you.
In this position of the body, the reference
line makes an angle u with the x axis.

x

y

Reference

lin
e

θ
r

s

Rotation
axis

The body has rotated
counterclockwise
by angle   . This is the
positive direction.

θ

This dot means that 
the rotation axis is 
out toward you.



An angle defined in this way is measured in radians (rad) rather than in
revolutions (rev) or degrees. The radian, being the ratio of two lengths, is a
pure number and thus has no dimension. Because the circumference of a circle of
radius r is 2pr, there are 2p radians in a complete circle:

(10-2)

and thus 1 rad � 57.3� � 0.159 rev. (10-3)

We do not reset u to zero with each complete rotation of the reference line about
the rotation axis. If the reference line completes two revolutions from the zero
angular position, then the angular position u of the line is u � 4p rad.

For pure translation along an x axis, we can know all there is to know
about a moving body if we know x(t), its position as a function of time.
Similarly, for pure rotation, we can know all there is to know about a rotating
body if we know u(t), the angular position of the body’s reference line as a
function of time.

Angular Displacement
If the body of Fig. 10-3 rotates about the rotation axis as in Fig. 10-4, changing the
angular position of the reference line from u1 to u2, the body undergoes an 
angular displacement �u given by

�u � u2 � u1. (10-4)

This definition of angular displacement holds not only for the rigid body as a
whole but also for every particle within that body.

Clocks Are Negative. If a body is in translational motion along an x axis, its
displacement �x is either positive or negative, depending on whether the body is
moving in the positive or negative direction of the axis. Similarly, the angular dis-
placement �u of a rotating body is either positive or negative, according to the
following rule:

1 rev � 360� �
2pr

r
� 2p rad,
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An angular displacement in the counterclockwise direction is positive, and one in
the clockwise direction is negative.

Checkpoint 1
A disk can rotate about its central axis like a merry-go-round.Which of the following
pairs of values for its initial and final angular positions, respectively, give a negative 
angular displacement: (a) �3 rad, �5 rad, (b) �3 rad, �7 rad, (c) 7 rad, �3 rad?

The phrase “clocks are negative” can help you remember this rule (they certainly
are negative when their alarms sound off early in the morning).

Angular Velocity
Suppose that our rotating body is at angular position u1 at time t1 and at 
angular position u2 at time t2 as in Fig. 10-4. We define the average angular velocity
of the body in the time interval �t from t1 to t2 to be

(10-5)

where �u is the angular displacement during �t (v is the lowercase  omega).

vavg �
u2 � u1

t2 � t1
�

�u

�t
,
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Figure 10-4 The reference line of the rigid body of Figs. 10-2 and 10-3 is at angular position
u1 at time t1 and at angular position u2 at a later time t2. The quantity �u (� u2 � u1) is the
angular displacement that occurs during the interval �t (� t2 � t1). The body itself is not
shown.

x

y

Rotation axis O
θ 1

θ 2

Δ   θ 

At t2

At t1

Reference line

This change in the angle of the reference line 
(which is part of the body) is equal to the angular
displacement of the body itself during this 
time interval.

The (instantaneous) angular velocity v, with which we shall be most con-
cerned, is the limit of the ratio in Eq. 10-5 as �t approaches zero.Thus,

(10-6)

If we know u(t), we can find the angular velocity v by differentiation.
Equations 10-5 and 10-6 hold not only for the rotating rigid body as a whole

but also for every particle of that body because the particles are all locked
together. The unit of angular velocity is commonly the radian per second (rad/s)
or the revolution per second (rev/s). Another measure of angular velocity was
used during at least the first three decades of rock: Music was produced by vinyl
(phonograph) records that were played on turntables at “ ” or “45 rpm,”
meaning at or 45 rev/min.

If a particle moves in translation along an x axis, its linear velocity v is either
positive or negative, depending on its direction along the axis. Similarly, the angu-
lar velocity v of a rotating rigid body is either positive or negative, depending on
whether the body is rotating counterclockwise (positive) or clockwise (negative).
(“Clocks are negative” still works.) The magnitude of an angular velocity is called
the angular speed, which is also represented with v.

Angular Acceleration
If the angular velocity of a rotating body is not constant, then the body has an an-
gular acceleration. Let v2 and v1 be its angular velocities at times t2 and t1,
respectively.The average angular acceleration of the rotating body in the interval
from t1 to t2 is defined as

(10-7)

in which �v is the change in the angular velocity that occurs during the time
interval �t. The (instantaneous) angular acceleration a, with which we shall be
most concerned, is the limit of this quantity as �t approaches zero.Thus,

(10-8)

As the name suggests, this is the angular acceleration of the body at a given in-
stant. Equations 10-7 and 10-8 also hold for every particle of that body. The unit of
angular acceleration is commonly the radian per second-squared (rad/s2) or the
revolution per second-squared (rev/s2).

a � lim
�t:0

�v

�t
�

dv

dt
.

aavg �
v 2 � v 1

t2 � t1
�

�v

�t
,

331
3 rev/min

331
3 rpm

v � lim
�t:0

 
�u

�t
�

du

dt
.
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Calculations: To sketch the disk and its reference line at a
particular time, we need to determine u for that time. To do
so, we substitute the time into Eq. 10-9. For t � �2.0 s, we get

This means that at t � �2.0 s the reference line on the disk
is rotated counterclockwise from the zero position by angle
1.2 rad � 69� (counterclockwise because u is positive). Sketch
1 in Fig. 10-5b shows this position of the reference line.

Similarly, for t � 0, we find u � �1.00 rad � �57�,
which means that the reference line is rotated clockwise
from the zero angular position by 1.0 rad, or 57�, as shown
in sketch 3. For t � 4.0 s, we find u � 0.60 rad � 34�
(sketch 5). Drawing sketches for when the curve crosses
the t axis is easy, because then u � 0 and the reference line
is momentarily aligned with the zero angular position
(sketches 2 and 4).

(b) At what time tmin does u(t) reach the minimum 
value shown in Fig. 10-5b? What is that minimum value?

� 1.2 rad � 1.2 rad 
360�

2� rad
� 69�.

u � �1.00 � (0.600)(�2.0) � (0.250)(�2.0)2

Sample Problem 10.01 Angular velocity derived from angular position

The disk in Fig. 10-5a is rotating about its central axis like a
merry-go-round. The angular position u(t) of a reference
line on the disk is given by

u � �1.00 � 0.600t � 0.250t2, (10-9)

with t in seconds, u in radians, and the zero angular position
as indicated in the figure. (If you like, you can translate all
this into Chapter 2 notation by momentarily dropping the
word “angular” from “angular position” and replacing the
symbol u with the symbol x. What you then have is an equa-
tion that gives the position as a function of time, for the one-
dimensional motion of Chapter 2.)

(a) Graph the angular position of the disk versus time
from t � �3.0 s to t � 5.4 s. Sketch the disk and its angular
position reference line at t � �2.0 s, 0 s, and 4.0 s, and
when the curve crosses the t axis.

KEY IDEA

The angular position of the disk is the angular position 
u(t) of its reference line, which is given by Eq. 10-9 as a function
of time t. So we graph Eq. 10-9; the result is shown in Fig. 10-5b.

A

Zero
angular
position

Reference
line

Rotation axis

(a)

(b)

2

0

–2
0 2 4 6

(rad)

(1) (2) (3) (4) (5)

t (s)

θ

–2

The angular position
of the disk is the angle
between these two lines.

Now, the disk is
at a zero angle.

θ

At t = −2 s, the disk
is at a positive
(counterclockwise)
angle. So, a positive
   value is plotted.

This is a plot of the angle
of the disk versus time.

Now, it is at a
negative (clockwise)
angle. So, a negative
   value is plotted.θ

It has reversed
its rotation and
is again at a
zero angle.

Now, it is
back at a
positive
angle.

Figure 10-5 (a) A rotating disk. (b) A plot of the disk’s angular position u(t). Five sketches indicate the angular position of the refer-
ence line on the disk for five points on the curve. (c) A plot of the disk’s angular velocity v(t). Positive values of v correspond to
counterclockwise rotation, and negative values to clockwise rotation.
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t � �3.0 s to t � 6.0 s. Sketch the disk and indicate the direc-
tion of turning and the sign of v at t � �2.0 s,4.0 s,and tmin.

KEY IDEA

From Eq. 10-6, the angular velocity v is equal to du/dt as
given in Eq. 10-10. So, we have

v � �0.600 � 0.500t. (10-11)

The graph of this function v(t) is shown in Fig. 10-5c.
Because the function is linear, the plot is a straight line. The
slope is 0.500 rad/s2 and the intercept with the vertical axis
(not shown) is �0.600 rad/s.

Calculations: To sketch the disk at t � �2.0 s, we substitute
that value into Eq. 10-11, obtaining

v � �1.6 rad/s. (Answer)

The minus sign here tells us that at t � �2.0 s, the disk is
turning clockwise (as indicated by the left-hand  sketch in
Fig. 10-5c).

Substituting t � 4.0 s into Eq. 10-11 gives us

v � 1.4 rad/s. (Answer)

The implied plus sign tells us that now the disk is turning
counterclockwise (the right-hand sketch in Fig. 10-5c).

For tmin, we already know that du/dt � 0. So, we must
also have v � 0. That is, the disk momentarily stops when
the reference line reaches the minimum value of u in
Fig. 10-5b, as suggested by the center sketch in Fig. 10-5c. On
the graph of v versus t in Fig. 10-5c, this momentary stop is
the zero point where the plot changes from the negative
clockwise motion to the positive counterclockwise motion.

(d) Use the results in parts (a) through (c) to describe the
motion of the disk from t � �3.0 s to t � 6.0 s.

Description: When we first observe the disk at t � �3.0 s, it
has a positive angular position and is turning clockwise but
slowing. It stops at angular position u � �1.36 rad and then
begins to turn counterclockwise, with its angular position
eventually becoming positive again.

KEY IDEA

To find the extreme value (here the minimum) of a function,
we take the first derivative of the function and set the result
to zero.

Calculations: The first derivative of u(t) is

(10-10)

Setting this to zero and solving for t give us the time at
which u(t) is minimum:

tmin � 1.20 s. (Answer)

To get the minimum value of u, we next substitute tmin into
Eq. 10-9, finding

u � �1.36 rad � �77.9�. (Answer)

This minimum of u(t) (the bottom of the curve in Fig. 10-5b)
corresponds to the maximum clockwise rotation of the disk
from the zero angular position, somewhat more than is
shown in sketch 3.

(c) Graph the angular velocity v of the disk versus time from 

du

dt
� �0.600 � 0.500t.

(c)

2

0

–2
–2 0 2 4 6

(rad/s)ω

t (s)

negative ω zero ω positive ω

This is a plot of the angular
velocity of the disk versus time.

The angular velocity is
initially negative and slowing,
then momentarily zero during
reversal, and then positive and
increasing.

Additional examples, video, and
practice available at WileyPLUS
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Are Angular Quantities Vectors?
We can describe the position, velocity, and acceleration of a single particle by
means of vectors. If the particle is confined to a straight line, however, we do not
really need vector notation. Such a particle has only two directions available to it,
and we can indicate these directions with plus and minus signs.

In the same way, a rigid body rotating about a fixed axis can rotate only
clockwise or counterclockwise as seen along the axis, and again we can select
between the two directions by means of plus and minus signs.The question arises:
“Can we treat the angular displacement, velocity, and acceleration of a rotating
body as vectors?” The answer is a qualified “yes” (see the caution below, in con-
nection with angular displacements).

Angular Velocities. Consider the angular velocity. Figure 10-6a shows a
vinyl record rotating on a turntable. The record has a constant angular speed

in the clockwise direction. We can represent its angular ve-
locity as a vector pointing along the axis of rotation, as in Fig. 10-6b. Here’s
how: We choose the length of this vector according to some convenient scale,
for example, with 1 cm corresponding to 10 rev/min. Then we establish a direc-
tion for the vector by using a right-hand rule, as Fig. 10-6c shows: Curl your
right hand about the rotating record, your fingers pointing in the direction of
rotation. Your extended thumb will then point in the direction of the angular
velocity vector. If the record were to rotate in the opposite sense, the right-

v:

v:
v (� 331

3 rev/min)

To evaluate the constant of integration C, we note that v �
5 rad/s at t � 0. Substituting these values in our expression
for v yields

,

so C � 5 rad/s.Then

. (Answer)

(b) Obtain an expression for the angular position u(t) of the
top.

KEY IDEA

By definition, v(t) is the derivative of u(t) with respect to
time. Therefore, we can find u(t) by integrating v(t) with 
respect to time.

Calculations: Since Eq. 10-6 tells us that

du � v dt,
we can write

(Answer)

where C� has been evaluated by noting that u � 2 rad at t � 0.

� 1
4 t5 � 2

3 t3 � 5t � 2,

� 1
4 t5 � 2

3 t3 � 5t � C�

u � � v dt � � (5
4 t4 � 2t2 � 5) dt

v � 5
4 t4 � 2t2 � 5

5 rad/s � 0 � 0 � C

Sample Problem 10.02 Angular velocity derived from angular acceleration

A child’s top is spun with angular acceleration

,

with t in seconds and a in radians per second-squared. At
t � 0, the top has angular velocity 5 rad/s, and a reference
line on it is at angular position u � 2 rad.

(a) Obtain an expression for the angular velocity v(t) of the
top.That is, find an expression that explicitly indicates how the
angular velocity depends on time. (We can tell that there is
such a dependence because the top is undergoing an angular
acceleration,which means that its angular velocity is changing.)

KEY IDEA

By definition, a(t) is the derivative of v(t) with respect to time.
Thus, we can find v(t) by integrating a(t) with respect to time.

Calculations: Equation 10-8 tells us

,

so .

From this we find

.v � �(5t3 � 4t) dt � 5
4t

4 � 4
2t

2 � C

� dv � �a dt

dv � a dt

a � 5t3 � 4t

Additional examples, video, and practice available at WileyPLUS
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hand rule would tell you that the angular velocity vector then points in the op-
posite direction.

It is not easy to get used to representing angular quantities as vectors. We in-
stinctively expect that something should be moving along the direction of a vec-
tor. That is not the case here. Instead, something (the rigid body) is rotating
around the direction of the vector. In the world of pure rotation, a vector defines
an axis of rotation, not a direction in which something moves. Nonetheless, the
vector also defines the motion. Furthermore, it obeys all the rules for vector
manipulation discussed in Chapter 3. The angular acceleration is another
vector, and it too obeys those rules.

In this chapter we consider only rotations that are about a fixed axis. For such
situations, we need not consider vectors—we can represent angular velocity with
v and angular acceleration with a, and we can indicate direction with an implied
plus sign for counterclockwise or an explicit minus sign for clockwise.

Angular Displacements. Now for the caution: Angular displacements
(unless they are very small) cannot be treated as vectors. Why not? We can cer-
tainly give them both magnitude and direction, as we did for the angular veloc-
ity vector in Fig. 10-6. However, to be represented as a vector, a quantity must
also obey the rules of vector addition, one of which says that if you add two
vectors, the order in which you add them does not matter. Angular displace-
ments fail this test.

Figure 10-7 gives an example. An initially horizontal book is given two
90� angular displacements, first in the order of Fig. 10-7a and then in the order
of Fig. 10-7b. Although the two angular displacements are identical, their order
is not, and the book ends up with different orientations. Here’s another exam-
ple. Hold your right arm downward, palm toward your thigh. Keeping your
wrist rigid, (1) lift the arm forward until it is horizontal, (2) move it horizon-
tally until it points toward the right, and (3) then bring it down to your side.
Your palm faces forward. If you start over, but reverse the steps, which way
does your palm end up facing? From either example, we must conclude that
the addition of two angular displacements depends on their order and they
cannot be vectors.

a:

Figure 10-6 (a) A record rotating about a vertical axis that coincides with the axis of the
spindle. (b) The angular velocity of the rotating record can be represented by the vector

, lying along the axis and pointing down, as shown. (c) We establish the direction of the
angular velocity vector as downward by using a right-hand rule. When the fingers of the
right hand curl around the record and point the way it is moving, the extended thumb
points in the direction of .v:

v:

z z z 

(a) (b) (c)

Axis Axis Axis 

ω 

Spindle

ω 

This right-hand rule
establishes the
direction of the
angular velocity
vector.

Figure 10-7 (a) From its initial position, at
the top, the book is given two successive
90� rotations, first about the (horizontal)
x axis and then about the (vertical) y axis.
(b) The book is given the same rotations,
but in the reverse order.
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z The order of the
rotations makes
a big difference
in the result.
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Rotation with Constant Angular Acceleration
In pure translation, motion with a constant linear acceleration (for example, that
of a falling body) is an important special case. In Table 2-1, we displayed a series
of equations that hold for such motion.

In pure rotation, the case of constant angular acceleration is also important,
and a parallel set of equations holds for this case also. We shall not derive them
here, but simply write them from the corresponding linear equations, substituting
equivalent angular quantities for the linear ones.This is done in Table 10-1, which
lists both sets of equations (Eqs. 2-11 and 2-15 to 2-18; 10-12 to 10-16).

Recall that Eqs. 2-11 and 2-15 are basic equations for constant linear 
acceleration—the other equations in the Linear list can be derived from them.
Similarly, Eqs. 10-12 and 10-13 are the basic equations for constant angular
acceleration, and the other equations in the Angular list can be derived from
them.To solve a simple problem involving constant angular acceleration, you can
usually use an equation from the Angular list (if you have the list). Choose
an equation for which the only unknown variable will be the variable requested
in the problem. A better plan is to remember only Eqs. 10-12 and 10-13, and then
solve them as simultaneous equations whenever needed.

10-2 ROTATION WITH CONSTANT ANGULAR ACCELERATION 

After reading this module, you should be able to . . .

10.14 For constant angular acceleration, apply the relation-
ships between angular position, angular displacement, 

Key Idea
● Constant angular acceleration (a � constant) is an important special case of rotational motion. The appropriate kinematic
equations are

v � v0 � at,

u � u0 � vt � 1
2 at2.

u � u0 � 1
2 (v0 � v)t,

v2 � v0
2 � 2a(u � u0),

u � u0 � v0t � 1
2at2,

Learning Objective

angular velocity, angular acceleration, and elapsed time 
(Table 10-1).

Table 10-1 Equations of Motion for Constant Linear Acceleration and for Constant Angular Acceleration

Equation Linear Missing Angular Equation
Number Equation Variable Equation Number

(2-11) v � v0 � at x � x0 u � u0 v � v0 � at (10-12)
(2-15) v v (10-13)
(2-16) t t (10-14)
(2-17) a a (10-15)
(2-18) v0 v0 (10-16)u � u0 � vt � 1

2at2x � x0 � vt � 1
2at2

u � u0 � 1
2(v0 � v)tx � x0 � 1

2(v0 � v)t

v2 � v0
2 � 2a(u � u0)v2 � v0

2 � 2a(x � x0)
u � u0 � v0t � 1

2at2x � x0 � v0 t � 1
2 at2

Checkpoint 2
In four situations, a rotating body has angular position u(t) given by (a) u � 3t � 4,
(b) u � �5t3 � 4t2 � 6, (c) u � 2/t2 � 4/t, and (d) u � 5t2 � 3.To which situations do
the angular equations of Table 10-1 apply?
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(We converted 5.0 rev to 10p rad to keep the units consis-
tent.) Solving this quadratic equation for t, we find

t � 32 s. (Answer)

Now notice something a bit strange. We first see the wheel
when it is rotating in the negative direction and through the
u � 0 orientation.Yet, we just found out that 32 s later it is at
the positive orientation of u � 5.0 rev. What happened in
that time interval so that it could be at a positive orientation?

(b) Describe the grindstone’s rotation between t � 0 and 
t � 32 s.

Description: The wheel is initially rotating in the negative
(clockwise) direction with angular velocity v0 � �4.6 rad/s,
but its angular acceleration a is positive. This initial opposi-
tion of the signs of angular velocity and angular accelera-
tion means that the wheel slows in its rotation in the nega-
tive direction, stops, and then reverses to rotate in the
positive direction. After the reference line comes back
through its initial orientation of u � 0, the wheel turns an
additional 5.0 rev by time t � 32 s.

(c) At what time t does the grindstone momentarily stop?

Calculation: We again go to the table of equations for con-
stant angular acceleration, and again we need an equation
that contains only the desired unknown variable t. However,
now the equation must also contain the variable v, so that we
can set it to 0 and then solve for the corresponding time t. We
choose Eq. 10-12, which yields

(Answer)t �
v � v0

a
�

0 � (�4.6 rad/s)
0.35 rad/s2 � 13 s.

Sample Problem 10.03 Constant angular acceleration, grindstone

A grindstone (Fig. 10-8) rotates at constant angular acceler-
ation a � 0.35 rad/s2. At time t � 0, it has an angular velocity
of v0 � �4.6 rad/s and a reference line on it is horizontal, at
the angular position u0 � 0.

(a) At what time after t � 0 is the reference line at the 
angular position u � 5.0 rev?

KEY IDEA

The angular acceleration is constant, so we can use the rota-
tion equations of Table 10-1.We choose Eq. 10-13,

,

because the only unknown variable it contains is the desired
time t.

Calculations: Substituting known values and setting u0 � 0
and u � 5.0 rev � 10p rad give us

.10p rad � (�4.6 rad/s)t � 1
2 (0.35 rad/s2)t2

u � u0 � v0t � 1
2 at2

Figure 10-8 A grindstone. At t � 0 the reference line (which we
imagine to be marked on the stone) is horizontal.

Axis

Reference
line

Zero angular
position

We measure rotation by using
this reference line.
Clockwise = negative
Counterclockwise = positive

rad/s, the angular displacement is u � u0 � 20.0 rev, and the
angular velocity at the end of that displacement is v � 2.00
rad/s. In addition to the angular acceleration a that we want,
both basic equations also contain time t, which we do not
necessarily want.

To eliminate the unknown t, we use Eq. 10-12 to write

which we then substitute into Eq. 10-13 to write

Solving for a, substituting known data, and converting
20 rev to 125.7 rad, we find

(Answer)� �0.0301 rad/s2.

a �
v2 � v0

2

2(u � u0)
�

(2.00 rad/s)2 � (3.40 rad/s)2

2(125.7 rad)

u � u0 � v0� v � v0

a � � 1
2 a� v � v0

a
 �

2

.

t �
v � v0

a
,

Sample Problem 10.04 Constant angular acceleration, riding a Rotor

While you are operating a Rotor (a large, vertical, rotating
cylinder found in amusement parks), you spot a passenger in
acute distress and decrease the angular velocity of the cylin-
der from 3.40 rad/s to 2.00 rad/s in 20.0 rev, at constant angu-
lar acceleration. (The passenger is obviously more of a “trans-
lation person” than a “rotation person.”)

(a) What is the constant angular acceleration during this
decrease in angular speed?

KEY IDEA

Because the cylinder’s angular acceleration is constant, we
can relate it to the angular velocity and angular displacement
via the basic equations for constant angular acceleration
(Eqs. 10-12 and 10-13).

Calculations: Let’s first do a quick check to see if we can solve
the basic equations. The initial angular velocity is v0 � 3.40
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Relating the Linear and Angular Variables
In Module 4-5,we discussed uniform circular motion, in which a particle travels at con-
stant linear speed v along a circle and around an axis of rotation. When a rigid body,
such as a merry-go-round,rotates around an axis,each particle in the body moves in its
own circle around that axis. Since the body is rigid, all the particles make one revolu-
tion in the same amount of time;that is, they all have the same angular speed v.

However, the farther a particle is from the axis, the greater the circumference
of its circle is, and so the faster its linear speed v must be. You can notice this on a
merry-go-round. You turn with the same angular speed v regardless of your dis-
tance from the center, but your linear speed v increases noticeably if you move to
the outside edge of the merry-go-round.

We often need to relate the linear variables s, v, and a for a particular point in
a rotating body to the angular variables u, v, and a for that body. The two sets of
variables are related by r, the perpendicular distance of the point from the
rotation axis. This perpendicular distance is the distance between the point and
the rotation axis, measured along a perpendicular to the axis. It is also the radius r
of the circle traveled by the point around the axis of rotation.

(b) How much time did the speed decrease take?

Calculation: Now that we know a, we can use Eq. 10-12 to
solve for t: (Answer)� 46.5 s.

t �
v � v0

a
�

2.00 rad/s � 3.40 rad/s
�0.0301 rad/s2

10-3 RELATING THE LINEAR AND ANGULAR VARIABLES

After reading this module, you should be able to . . .

10.15 For a rigid body rotating about a fixed axis, relate the angular
variables of the body (angular position, angular velocity, and an-
gular acceleration) and the linear variables of a particle on the
body (position, velocity, and acceleration) at any given radius.

10.16 Distinguish between tangential acceleration and radial
acceleration, and draw a vector for each in a sketch of a
particle on a body rotating about an axis, for both an in-
crease in angular speed and a decrease.

● A point in a rigid rotating body, at a perpendicular distance
r from the rotation axis, moves in a circle with radius r. If the
body rotates through an angle u, the point moves along an
arc with length s given by

s � ur (radian measure),

where u is in radians.

● The linear velocity of the point is tangent to the circle; the
point’s linear speed v is given by

v � vr (radian measure),

where v is the angular speed (in radians per second) of the body,
and thus also the point.

v:

● The linear acceleration of the point has both tangential
and radial components. The tangential component is

at � ar (radian measure),

where a is the magnitude of the angular acceleration (in radi-
ans per second-squared) of the body. The radial component
of is

(radian measure).

● If the point moves in uniform circular motion, the period T of
the motion for the point and the body is

(radian measure).T �
2pr

v
�

2p

v

ar �
v2

r
� v2r

a:

a:

Learning Objectives

Key Ideas

Additional examples, video, and practice available at WileyPLUS
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The Position
If a reference line on a rigid body rotates through an angle u, a point within the
body at a position r from the rotation axis moves a distance s along a circular arc,
where s is given by Eq. 10-1:

s � ur (radian measure). (10-17)

This is the first of our linear–angular relations. Caution: The angle u here must be
measured in radians because Eq. 10-17 is itself the definition of angular measure
in radians.

The Speed
Differentiating Eq. 10-17 with respect to time—with r held constant—leads to

However, ds/dt is the linear speed (the magnitude of the linear velocity) of the
point in question, and du/dt is the angular speed v of the rotating body. So

v � vr (radian measure). (10-18)

Caution: The angular speed v must be expressed in radian measure.
Equation 10-18 tells us that since all points within the rigid body have the

same angular speed v, points with greater radius r have greater linear speed v.
Figure 10-9a reminds us that the linear velocity is always tangent to the circular
path of the point in question.

If the angular speed v of the rigid body is constant, then Eq. 10-18 tells
us that the linear speed v of any point within it is also constant. Thus, each point
within the body undergoes uniform circular motion. The period of revolution T
for the motion of each point and for the rigid body itself is given by Eq. 4-35:

. (10-19)

This equation tells us that the time for one revolution is the distance 2pr traveled
in one revolution divided by the speed at which that distance is traveled.
Substituting for v from Eq. 10-18 and canceling r, we find also that

(radian measure). (10-20)

This equivalent equation says that the time for one revolution is the angular dis-
tance 2p rad traveled in one revolution divided by the angular speed (or rate) at
which that angle is traveled.

The Acceleration
Differentiating Eq. 10-18 with respect to time—again with r held constant—
leads to

(10-21)

Here we run up against a complication. In Eq. 10-21, dv/dt represents only the
part of the linear acceleration that is responsible for changes in the magnitude v
of the linear velocity . Like , that part of the linear acceleration is tangent to
the path of the point in question. We call it the tangential component at of the lin-
ear acceleration of the point, and we write

at � ar (radian measure), (10-22)

v:v:

dv
dt

�
dv

dt
r.

T �
2p

v

T �
2pr

v

ds
dt

�
du

dt
r.

Figure 10-9 The rotating rigid body of Fig. 10-2,
shown in cross section viewed from above.
Every point of the body (such as P) moves
in a circle around the rotation axis. (a) The
linear velocity of every point is tangent to
the circle in which the point moves. (b) The
linear acceleration of the point has (in
general) two components: tangential at and
radial ar.

a:

v:

x

y

r

Rotation
axis

P

Circle
traveled by P

(a)

v

The velocity vector is
always tangent to this
circle around the
rotation axis.

x

y

ar

P

(b)

at

Rotation
axis

The acceleration always
has a radial (centripetal)
component and may have
a tangential component.
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where a � dv/dt. Caution: The angular acceleration a in Eq. 10-22 must be
expressed in radian measure.

In addition, as Eq. 4-34 tells us, a particle (or point) moving in a circular path
has a radial component of linear acceleration, ar � v2/r (directed radially inward),
that is responsible for changes in the direction of the linear velocity . By substi-
tuting for v from Eq. 10-18, we can write this component as

(radian measure). (10-23)

Thus, as Fig. 10-9b shows, the linear acceleration of a point on a rotating rigid
body has, in general, two components. The radially inward component ar (given
by Eq. 10-23) is present whenever the angular velocity of the body is not zero.
The tangential component at (given by Eq. 10-22) is present whenever the angu-
lar acceleration is not zero.

ar �
v2

r
� v2r

v:

Checkpoint 3
A cockroach rides the rim of a rotating merry-go-round. If the angular speed of this
system (merry-go-round � cockroach) is constant, does the cockroach have (a) radial
acceleration and (b) tangential acceleration? If v is decreasing, does the cockroach
have (c) radial acceleration and (d) tangential acceleration?

and radial accelerations are the (perpendicular) compo-
nents of the (full) acceleration .

Calculations: Let’s go through the steps. We first find the
angular velocity by taking the time derivative of the given
angular position function and then substituting the given
time of t � 2.20 s:

v � (ct3) � 3ct2 (10-25)

� 3(6.39 � 10�2 rad/s3)(2.20 s)2

� 0.928 rad/s. (Answer)

From Eq. 10-18, the linear speed just then is

v � vr � 3ct2r (10-26)
� 3(6.39 � 10�2 rad/s3)(2.20 s)2(33.1 m)

� 30.7 m/s. (Answer)

du

dt
�

d
dt

a:

Sample Problem 10.05 Designing The Giant Ring, a large-scale amusement park ride

We are given the job of designing a large horizontal ring
that will rotate around a vertical axis and that will have a ra-
dius of r � 33.1 m (matching that of Beijing’s The Great
Observation Wheel, the largest Ferris wheel in the world).
Passengers will enter through a door in the outer wall of the
ring and then stand next to that wall (Fig. 10-10a).We decide
that for the time interval t � 0 to t � 2.30 s, the angular posi-
tion u(t) of a reference line on the ring will be given by

u � ct3, (10-24)

with c � 6.39 � 10�2 rad/s3. After t � 2.30 s, the angular
speed will be held constant until the end of the ride. Once
the ring begins to rotate, the floor of the ring will drop away
from the riders but the riders will not fall—indeed, they feel
as though they are pinned to the wall. For the time t � 2.20 s,
let’s determine a rider’s angular speed v, linear speed v, an-
gular acceleration a, tangential acceleration at, radial accel-
eration ar, and acceleration .

KEY IDEAS

(1) The angular speed v is given by Eq. 10-6 (v � du/dt).
(2) The linear speed v (along the circular path) is related to
the angular speed (around the rotation axis) by Eq. 10-18 
(v � vr). (3) The angular acceleration a is given by Eq. 10-8
(a � dv/dt). (4) The tangential acceleration at (along the cir-
cular path) is related to the angular acceleration (around
the rotation axis) by Eq. 10-22 (at � ar). (5) The radial accel-
eration ar is given Eq. 10-23 (ar � v2r). (6) The tangential

a:

u

a

ar

at

(b)(a)

Figure 10-10 (a) Overhead view of
a passenger ready to ride The
Giant Ring. (b) The radial and
tangential acceleration compo-
nents of the (full) acceleration.
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Additional examples, video, and practice available at WileyPLUS

The radial and tangential accelerations are perpendicu-
lar to each other and form the components of the rider’s 
acceleration (Fig. 10-10b). The magnitude of is given by

a � (10-29)

39.9 m/s2, (Answer)

or 4.1g (which is really exciting!). All these values are 
acceptable.

To find the orientation of , we can calculate the angle u
shown in Fig. 10-10b:

tan u �

However, instead of substituting our numerical results, let’s
use the algebraic results from Eqs. 10-27 and 10-28:

u � tan�1 . (10-30)

The big advantage of solving for the angle algebraically is that
we can then see that the angle (1) does not depend on the
ring’s radius and (2) decreases as t goes from 0 to 2.20 s. That
is, the acceleration vector swings toward being radially in-
ward because the radial acceleration (which depends on t4)
quickly dominates over the tangential acceleration (which
depends on only t).At our given time t � 2.20 s, we have

u �. (Answer)� tan�1 2
3(6.39 � 10�2 rad/s3)(2.20 s)3 � 44.4

a:

� 6ctr
9c2t4r � � tan�1� 2

3ct3 �

at

ar
.

a:

�

� 2(28.49 m/s2)2 � (27.91 m/s2)2

2a2
r � a2

t

a:a:

Although this is fast (111 km/h or 68.7 mi/h), such speeds are
common in amusement parks and not alarming because (as
mentioned in Chapter 2) your body reacts to accelerations but
not to velocities. (It is an accelerometer, not a speedometer.)
From Eq. 10-26 we see that the linear speed is increasing as the
square of the time (but this increase will cut off at t � 2.30 s).

Next, let’s tackle the angular acceleration by taking the
time derivative of Eq. 10-25:

a � (3ct2) � 6ct

� 6(6.39 � 10�2 rad/s3)(2.20 s) � 0.843 rad/s2. (Answer)

The tangential acceleration then follows from Eq. 10-22:

at � ar � 6ctr (10-27)

� 6(6.39 � 10�2 rad/s3)(2.20 s)(33.1 m)

� 27.91 m/s2 27.9 m/s2, (Answer)

or 2.8g (which is reasonable and a bit exciting). Equation 
10-27 tells us that the tangential acceleration is increasing
with time (but it will cut off at t � 2.30 s). From Eq. 10-23,
we write the radial acceleration as

ar � v2r.

Substituting from Eq. 10-25 leads us to

ar � (3ct2)2r � 9c2t4r (10-28)

� 9(6.39 � 10�2 rad/s3)2(2.20 s)4(33.1 m)

� 28.49 m/s2 28.5 m/s2, (Answer)

or 2.9g (which is also reasonable and a bit exciting).

�

�

dv

dt
�

d
dt

10-4 KINETIC ENERGY OF ROTATION

After reading this module, you should be able to . . .

10.17 Find the rotational inertia of a particle about a point.
10.18 Find the total rotational inertia of many particles moving

around the same fixed axis. 

10.19 Calculate the rotational kinetic energy of a 
body in terms of its rotational inertia and its angular 
speed.

● The kinetic energy K of a rigid body rotating about a fixed
axis is given by

(radian measure),K � 1
2Iv2

in which I is the rotational inertia of the body, defined as

for a system of discrete particles.

I � � miri
2

Learning Objectives

Key Idea

Kinetic Energy of Rotation
The rapidly rotating blade of a table saw certainly has kinetic energy due to that
rotation. How can we express the energy? We cannot apply the familiar formula

to the saw as a whole because that would give us the kinetic energy
only of the saw’s center of mass, which is zero.
K � 1

2 mv2
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Figure 10-11 A long rod is much easier to
rotate about (a) its central (longitudinal)
axis than about (b) an axis through its 
center and perpendicular to its length. The
reason for the difference is that the mass
is distributed closer to the rotation axis in
(a) than in (b).

Rotation
axis

(a)

(b)

Rod is easy to rotate
this way.

Harder this way.

Instead, we shall treat the table saw (and any other rotating rigid body) as a
collection of particles with different speeds. We can then add up the kinetic
energies of all the particles to find the kinetic energy of the body as a whole.
In this way we obtain, for the kinetic energy of a rotating body,

(10-31)

in which mi is the mass of the ith particle and vi is its speed.The sum is taken over
all the particles in the body.

The problem with Eq. 10-31 is that vi is not the same for all particles.We solve
this problem by substituting for v from Eq. 10-18 (v � vr), so that we have

(10-32)

in which v is the same for all particles.
The quantity in parentheses on the right side of Eq. 10-32 tells us how

the mass of the rotating body is distributed about its axis of rotation. We call
that quantity the rotational inertia (or moment of inertia) I of the body with
respect to the axis of rotation. It is a constant for a particular rigid body and
a particular rotation axis. (Caution: That axis must always be specified if the
value of I is to be meaningful.)

We may now write

(rotational inertia) (10-33)

and substitute into Eq. 10-32, obtaining

(radian measure) (10-34)

as the expression we seek. Because we have used the relation v � vr in deriving
Eq. 10-34, v must be expressed in radian measure. The SI unit for I is the
kilogram–square meter (kg 
m2).

The Plan. If we have a few particles and a specified rotation axis, we find mr2

for each particle and then add the results as in Eq. 10-33 to get the total rotational in-
ertia I. If we want the total rotational kinetic energy, we can then substitute that I
into Eq. 10-34.That is the plan for a few particles, but suppose we have a huge num-
ber of particles such as in a rod. In the next module we shall see how to handle such
continuous bodies and do the calculation in only a few minutes.

Equation 10-34, which gives the kinetic energy of a rigid body in pure rotation,
is the angular equivalent of the formula , which gives the kinetic energyK � 1

2 Mvcom
2

K � 1
2 I�2

I � � mir i
2

K � � 1
2 mi(vri)2 � 1

2 �� miri
2�v2,

� � 1
2mivi

2,

K � 1
2 m1v2

1 � 1
2 m2v2

2 � 1
2 m3v2

3 � 
 
 


of a rigid body in pure translation. In both formulas there is a factor of . Where
mass M appears in one equation, I (which involves both mass and its distribution)
appears in the other. Finally, each equation contains as a factor the square of a
speed—translational or rotational as appropriate. The kinetic energies of transla-
tion and of rotation are not different kinds of energy. They are both kinetic energy,
expressed in ways that are appropriate to the motion at hand.

We noted previously that the rotational inertia of a rotating body involves
not only its mass but also how that mass is distributed. Here is an example that
you can literally feel. Rotate a long, fairly heavy rod (a pole, a length of lumber,
or something similar), first around its central (longitudinal) axis (Fig. 10-11a)
and then around an axis perpendicular to the rod and through the center
(Fig. 10-11b). Both rotations involve the very same mass, but the first rotation is
much easier than the second. The reason is that the mass is distributed much
closer to the rotation axis in the first rotation. As a result, the rotational inertia
of the rod is much smaller in Fig. 10-11a than in Fig. 10-11b. In general, smaller
rotational inertia means easier rotation.

1
2
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Checkpoint 4
The figure shows three small spheres that rotate
about a vertical axis.The perpendicular distance 
between the axis and the center of each sphere is
given. Rank the three spheres according to their 
rotational inertia about that axis, greatest first.

Rotation
axis

4 kg 
3 m 

2 m 

1 m 

9 kg 

36 kg 

10-5 CALCULATING THE ROTATIONAL INERTIA

After reading this module, you should be able to . . .

10.20 Determine the rotational inertia of a body if it is given in
Table 10-2.

10.21 Calculate the rotational inertia of a body by integration
over the mass elements of the body.

10.22 Apply the parallel-axis theorem for a rotation axis that is
displaced from a parallel axis through the center of mass of
a body.

● I is the rotational inertia of the body, defined as

for a system of discrete particles and defined as

for a body with continuously distributed mass. The r and ri in
these expressions represent the perpendicular distance from
the axis of rotation to each mass element in the body, and the
integration is carried out over the entire body so as to include
every mass element.

I � � r 2 dm

I � � miri
2

● The parallel-axis theorem relates the rotational inertia I of a
body about any axis to that of the same body about a parallel
axis through the center of mass:

I � Icom � Mh2.

Here h is the perpendicular distance between the two axes,
and Icom is the rotational inertia of the body about the axis
through the com. We can describe h as being the distance
the actual rotation axis has been shifted from the rotation axis
through the com.

Learning Objectives

Key Ideas

Calculating the Rotational Inertia
If a rigid body consists of a few particles, we can calculate its rotational inertia
about a given rotation axis with Eq. 10-33 ; that is, we can find the
product mr 2 for each particle and then sum the products. (Recall that r is the per-
pendicular distance a particle is from the given rotation axis.)

If a rigid body consists of a great many adjacent particles (it is continuous, like
a Frisbee), using Eq. 10-33 would require a computer.Thus, instead, we replace the
sum in Eq. 10-33 with an integral and define the rotational inertia of the body as

(rotational inertia, continuous body). (10-35)

Table 10-2 gives the results of such integration for nine common body shapes and
the indicated axes of rotation.

Parallel-Axis Theorem
Suppose we want to find the rotational inertia I of a body of mass M about a
given axis. In principle, we can always find I with the integration of Eq. 10-35.
However, there is a neat shortcut if we happen to already know the rotational in-
ertia Icom of the body about a parallel axis that extends through the body’s center
of mass. Let h be the perpendicular distance between the given axis and the axis

I � � r 2 dm

(I � � miri
2)
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Table 10-2 Some Rotational Inertias

Axis

Hoop about 
central axis 

Axis

Annular cylinder 
(or ring) about

central axis 

R

I = MR 2 (b)(a) I = M(R 1
2 + R 2

2)

R 2

R 1

Thin rod about 
axis through center

perpendicular to 
length

(e)
I = ML 2

L

Axis

AxisAxis

Hoop about any
diameter

Slab about
perpendicular
axis through 

center

(i)(h)
I = MR 2 I =    M(a 2 + b 2)

R

b
a

Axis

Solid cylinder 
(or disk) about 

central axis 

(c)
I = MR 2

R
L

Axis

Solid cylinder 
(or disk) about 

central diameter 

(d)
I = MR 2 + ML 2

R
L

Axis

Thin
spherical shell 

about any
diameter

(g)
I = MR 2

2R

Solid sphere 
about any
diameter

(f)
I = MR 2

2R

Axis

1__
2 1__

2

2__
5

1__
4

2__
3

1__
2

1__
12

1__
12

1__
12

Figure 10-12 A rigid body in cross section,
with its center of mass at O. The parallel-
axis theorem (Eq. 10-36) relates the 
rotational inertia of the body about an axis
through O to that about a parallel axis
through a point such as P, a distance h
from the body’s center of mass.

dm

r

P

h

a
b

x – a 

y – b 

com
O

Rotation axis 
through

center of mass 

Rotation axis 
through P

y

x

We need to relate the rotational inertia 
around the axis at P to that around the 
axis at the com.

through the center of mass (remember these two axes must be parallel).Then the
rotational inertia I about the given axis is

I � Icom � Mh2 (parallel-axis theorem). (10-36)

Think of the distance h as being the distance we have shifted the rotation axis
from being through the com.This equation is known as the parallel-axis theorem.
We shall now prove it.

Proof of the Parallel-Axis Theorem
Let O be the center of mass of the arbitrarily shaped body shown in cross section
in Fig. 10-12. Place the origin of the coordinates at O. Consider an axis through O
perpendicular to the plane of the figure, and another axis through point P paral-
lel to the first axis. Let the x and y coordinates of P be a and b.

Let dm be a mass element with the general coordinates x and y. The rota-
tional inertia of the body about the axis through P is then, from Eq. 10-35,

which we can rearrange as

(10-37)

From the definition of the center of mass (Eq. 9-9), the middle two integrals of
Eq. 10-37 give the coordinates of the center of mass (multiplied by a constant)

I � � (x2 � y2) dm � 2a � x dm � 2b � y dm � � (a2 � b2) dm.

I � � r 2 dm � � [(x � a)2 � ( y � b)2] dm,



27510-5 CALCULATING THE ROTATIONAL INERTIA

and thus must each be zero. Because x2 � y2 is equal to R2, where R is the dis-
tance from O to dm, the first integral is simply Icom, the rotational inertia of the
body about an axis through its center of mass. Inspection of Fig. 10-12 shows that
the last term in Eq. 10-37 is Mh2, where M is the body’s total mass. Thus,
Eq. 10-37 reduces to Eq. 10-36, which is the relation that we set out to prove.

Checkpoint 5
The figure shows a book-like object (one side is
longer than the other) and four choices of rotation
axes, all perpendicular to the face of the object.
Rank the choices according to the rotational inertia
of the object about the axis, greatest first.

(1) (2) (3) (4)

left and L for the particle on the right. Now Eq. 10-33
gives us

I � m(0)2 � mL2 � mL2. (Answer)

Second technique: Because we already know Icom about an
axis through the center of mass and because the axis here is
parallel to that “com axis,” we can apply the parallel-axis
theorem (Eq. 10-36).We find

(Answer)� mL2.

I � Icom � Mh2 � 1
2 mL2 � (2m)(1

2 L)2

Sample Problem 10.06 Rotational inertia of a two-particle system

Figure 10-13a shows a rigid body consisting of two particles of
mass m connected by a rod of length L and negligible mass.

(a) What is the rotational inertia Icom about an axis through the
center of mass,perpendicular to the rod as shown?

KEY IDEA

Because we have only two particles with mass, we can find
the body’s rotational inertia Icom by using Eq. 10-33 rather
than by integration. That is, we find the rotational inertia of
each particle and then just add the results.

Calculations: For the two particles, each at perpendicular
distance from the rotation axis, we have

(Answer)

(b) What is the rotational inertia I of the body about an axis
through the left end of the rod and parallel to the first axis
(Fig. 10-13b)?

KEY IDEAS

This situation is simple enough that we can find I using
either of two techniques. The first is similar to the one used
in part (a). The other, more powerful one is to apply the 
parallel-axis theorem.

First technique: We calculate I as in part (a), except here
the perpendicular distance ri is zero for the particle on the

� 1
2 mL2.

I � � miri
2 � (m)(1

2 L)2 � (m)(1
2 L)2

1
2 L

Additional examples, video, and practice available at WileyPLUS

m m

(a)

LL

com

Rotation axis
through

center of mass 

m m

(b)

L

com

Rotation axis through 
end of rod 

1__
2

1__
2

Here the rotation axis is through the com.

Here it has been shifted from the com 
without changing the orientation. We 
can use the parallel-axis theorem.

Figure 10-13 A rigid body consisting of two particles of mass m
joined by a rod of negligible mass.
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Sample Problem 10.07 Rotational inertia of a uniform rod, integration

Figure 10-14 shows a thin, uniform rod of mass M and length
L, on an x axis with the origin at the rod’s center.

(a) What is the rotational inertia of the rod about the
perpendicular rotation axis through the center?

KEY IDEAS

(1) The rod consists of a huge number of particles at a great
many different distances from the rotation axis. We certainly
don’t want to sum their rotational inertias individually. So, we
first write a general expression for the rotational inertia of a
mass element dm at distance r from the rotation axis: r2 dm.
(2) Then we sum all such rotational inertias by integrating the
expression (rather than adding them up one by one). From
Eq. 10-35, we write

(10-38)

(3) Because the rod is uniform and the rotation axis is at the
center, we are actually calculating the rotational inertia Icom

about the center of mass.

Calculations: We want to integrate with respect to coordinate
x (not mass m as indicated in the integral), so we must relate
the mass dm of an element of the rod to its length dx along the
rod. (Such an element is shown in Fig. 10-14.) Because the rod
is uniform, the ratio of mass to length is the same for all the el-
ements and for the rod as a whole.Thus, we can write

or dm �
M
L

dx.

element’s mass dm
element’s length dx

�
rod’s mass M
rod’s length L

I � � r 2 dm.

Figure 10-14 A uniform rod of length L
and mass M. An element of mass dm
and length dx is represented.

A

We can now substitute this result for dm and x for r in
Eq. 10-38.Then we integrate from end to end of the rod (from
x � �L/2 to x � L/2) to include all the elements.We find

(Answer)

(b) What is the rod’s rotational inertia I about a new rotation
axis that is perpendicular to the rod and through the left end?

KEY IDEAS

We can find I by shifting the origin of the x axis to the left end
of the rod and then integrating from to . However,
here we shall use a more powerful (and easier) technique by
applying the parallel-axis theorem (Eq. 10-36), in which we
shift the rotation axis without changing its orientation.

Calculations: If we place the axis at the rod’s end so that it
is parallel to the axis through the center of mass, then we
can use the parallel-axis theorem (Eq. 10-36). We know
from part (a) that Icom is . From Fig. 10-14, the perpen-
dicular distance h between the new rotation axis and the
center of mass is . Equation 10-36 then gives us

(Answer)

Actually, this result holds for any axis through the left
or right end that is perpendicular to the rod.

� 1
3 ML2.

I � Icom � Mh2 � 1
12 ML2 � (M)(1

2 L)2

1
2 L

1
12 ML2

x � Lx � 0

� 1
12 ML2.

�
M
3L 	x3


�L/2

�L/2

�
M
3L 	� L

2 �
3

� ��
L
2 �

3




I � �x��L/2

x��L/2
x2 � M

L � dx

Additional examples, video, and practice available at WileyPLUS

x

Rotation
axis

L__
2

L__
2

com M

We want the 
rotational inertia.

x

Rotation
axis

x dm

dx

First, pick any tiny element
and write its rotational
inertia as x2 dm.

x

x = −

Rotation
axis

Leftmost Rightmost

L__
2

x = L__
2

Then, using integration, add up
the rotational inertias for all of
the elements, from leftmost to
rightmost.
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KEY IDEA

The released energy was equal to the rotational kinetic en-
ergy K of the rotor just as it reached the angular speed of
14 000 rev/min.

Calculations: We can find K with Eq. 10-34 , but
first we need an expression for the rotational inertia I. Because
the rotor was a disk that rotated like a merry-go-round, I is
given  in Table 10-2c .Thus,

The angular speed of the rotor was

Then, with Eq. 10-34, we find the (huge) energy release:

(Answer)� 2.1 � 107 J.

K � 1
2 Iv2 � 1

2(19.64 kg
m2)(1.466 � 103 rad/s)2

� 1.466 � 103 rad/s.

v � (14 000 rev/min)(2p rad/rev)� 1 min
60 s �

I � 1
2 MR2 � 1

2 (272 kg)(0.38 m)2 � 19.64 kg 
m2.

(I � 1
2 MR2)

(K � 1
2 Iv2)

Sample Problem 10.08 Rotational kinetic energy, spin test explosion

Large machine components that undergo prolonged, high-
speed rotation are first examined for the possibility of fail-
ure in a spin test system. In this system, a component is spun
up (brought up to high speed) while inside a cylindrical
arrangement of lead bricks and containment liner, all within
a steel shell that is closed by a lid clamped into place. If the
rotation causes the component to shatter, the soft lead
bricks are supposed to catch the pieces for later analysis.

In 1985, Test Devices, Inc. (www.testdevices.com) was spin
testing a sample of a solid steel rotor (a disk) of mass M �
272 kg and radius R � 38.0 cm. When the sample reached
an angular speed v of 14 000 rev/min, the test engineers
heard a dull thump from the test system, which was
located one floor down and one room over from them.
Investigating, they found that lead bricks had been thrown
out in the hallway leading to the test room, a door to the
room had been hurled into the adjacent parking lot, one
lead brick had shot from the test site through the wall of a
neighbor’s kitchen, the structural beams of the test build-
ing had been damaged, the concrete floor beneath the
spin chamber had been shoved downward by about 0.5
cm, and the 900 kg lid had been blown upward through
the ceiling and had then crashed back onto the test equip-
ment (Fig. 10-15). The exploding pieces had not pene-
trated the room of the test engineers only by luck.

How much energy was released in the explosion of the
rotor?

Figure 10-15 Some of the
destruction caused by
the explosion of a rap-
idly rotating steel disk.
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10-6 TORQUE

After reading this module, you should be able to . . .

10.23 Identify that a torque on a body involves a force and a
position vector, which extends from a rotation axis to the
point where the force is applied.

10.24 Calculate the torque by using (a) the angle between
the position vector and the force vector, (b) the line of ac-
tion and the moment arm of the force, and (c) the force
component perpendicular to the position vector.

10.25 Identify that a rotation axis must always be specified to
calculate a torque.

10.26 Identify that a torque is assigned a positive or negative
sign depending on the direction it tends to make the body 
rotate about a specified rotation axis: “clocks are negative.”

10.27 When more than one torque acts on a body about a 
rotation axis, calculate the net torque.

Learning Objectives

● Torque is a turning or twisting action on a body about a 
rotation axis due to a force . If is exerted at a point given
by the position vector relative to the axis, then the magni-
tude of the torque is

where Ft is the component of perpendicular to and 
f is the angle between and . The quantity is the r�F

:
r:

r:F
:

t � rFt � r�F � rF sin f,

r:
F
:

F
:

perpendicular distance between the rotation axis and
an extended line running through the vector. This line
is called the line of action of , and is called the
moment arm of . Similarly, r is the moment arm of Ft.

● The SI unit of torque is the newton-meter (N 
m). A 
torque t is positive if it tends to rotate a body at rest 
counterclockwise and negative if it tends to rotate the
body clockwise.

F
:

r�F
:

F
:

Key Ideas

Additional examples, video, and practice available at WileyPLUS

www.testdevices.com
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Checkpoint 6
The figure shows an overhead view of a meter stick that can pivot about the dot at the position
marked 20 (for 20 cm).All five forces on the stick are horizontal and have the same magnitude.
Rank the forces according to the magnitude of the torque they produce, greatest first.

0 20 40 
Pivot point

100

F1
F2

F3

F4

F5

Figure 10-16 (a) A force acts on a rigid
body, with a rotation axis perpendicular to
the page. The torque can be found with
(a) angle f, (b) tangential force compo-
nent Ft, or (c) moment arm .r�

F
:

(a)

(b)

(c)

O

P

φ FrFt

Rotation
axis

F

r

O

P

φ

Rotation
axis

φ
Line of
action of F

r
Moment arm
of F

F

r

O

P

φ

Rotation
axis

F

r

The torque due to this force
causes rotation around this axis 
(which extends out toward you).

You calculate the same torque by 
using this moment arm distance 
and the full force magnitude.

But actually only the tangential
component of the force causes
the rotation.

magnitude Ft � F sin f.This component does cause rotation.
Calculating Torques. The ability of to rotate the body depends not only

on the magnitude of its tangential component Ft, but also on just how far from O
the force is applied. To include both these factors, we define a quantity called
torque t as the product of the two factors and write it as

t � (r)(F sin f). (10-39)

Two equivalent ways of computing the torque are

t � (r)(F sin f) � rFt (10-40)

and (10-41)

where is the perpendicular distance between the rotation axis at O and an extendedr�

t � (r sin f)(F) � r�F,

F
:

Torque
A doorknob is located as far as possible from the door’s hinge line for a good rea-
son. If you want to open a heavy door, you must certainly apply a force, but that
is not enough.Where you apply that force and in what direction you push are also
important. If you apply your force nearer to the hinge line than the knob, or at
any angle other than 90� to the plane of the door, you must use a greater force
than if you apply the force at the knob and perpendicular to the door’s plane.

Figure 10-16a shows a cross section of a body that is free to rotate about an
axis passing through O and perpendicular to the cross section. A force is
applied at point P, whose position relative to O is defined by a position vector .
The directions of vectors and make an angle f with each other. (For simplic-
ity, we consider only forces that have no component parallel to the rotation axis;
thus, is in the plane of the page.)

To determine how results in a rotation of the body around the rotation
axis, we resolve into two components (Fig. 10-16b). One component, called the
radial component Fr, points along . This component does not cause rotation,
because it acts along a line that extends through O. (If you pull on a door par-
allel to the plane of the door, you do not rotate the door.) The other compo-
nent of , called the tangential component Ft, is perpendicular to and hasr:F

:

r:
F
:

F
:

F
:

r:F
:

r:
F
:

line running through the vector (Fig. 10-16c). This extended line is called the line
of action of , and is called the moment arm of . Figure 10-16b shows that we
can describe r, the magnitude of ,as being the moment arm of the force component Ft.

Torque, which comes from the Latin word meaning “to twist,” may be loosely
identified as the turning or twisting action of the force . When you apply a force
to an object—such as a screwdriver or torque wrench—with the purpose of turn-
ing that object, you are applying a torque. The SI unit of torque is the newton-
meter (N 
m). Caution: The newton-meter is also the unit of work. Torque and
work, however, are quite different quantities and must not be confused. Work is
often expressed in joules (1 J � 1 N 
m), but torque never is.

Clocks Are Negative. In Chapter 11 we shall use vector notation for torques,
but here, with rotation around a single axis, we use only an algebraic sign. If a
torque would cause counterclockwise rotation, it is positive. If it would cause
clockwise rotation, it is negative. (The phrase “clocks are negative” from Module
10-1 still works.)

Torques obey the superposition principle that we discussed in Chapter 5 for
forces:When several torques act on a body, the net torque (or resultant torque) is
the sum of the individual torques.The symbol for net torque is tnet.

F
:

r:
F
:

r�F
:

F
:
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10-7 NEWTON’S SECOND LAW FOR ROTATION

After reading this module, you should be able to . . .

10.28 Apply Newton’s second law for rotation to relate the
net torque on a body to the body’s rotational inertia and 

rotational acceleration, all calculated relative to a specified 
rotation axis.

● The rotational analog of Newton’s second law is
tnet � Ia,

where tnet is the net torque acting on a particle or rigid body, 

I is the rotational inertia of the particle or body about the
rotation axis, and a is the resulting angular acceleration about
that axis.

Learning Objective

Key Idea

Newton’s Second Law for Rotation
A torque can cause rotation of a rigid body, as when you use a torque to rotate
a door. Here we want to relate the net torque tnet on a rigid body to the angular
acceleration a that torque causes about a rotation axis. We do so by analogy with
Newton’s second law (Fnet � ma) for the acceleration a of a body of mass m due
to a net force Fnet along a coordinate axis.We replace Fnet with tnet, m with I, and a
with a in radian measure, writing

tnet � Ia (Newton’s second law for rotation). (10-42)

Proof of Equation 10-42
We prove Eq. 10-42 by first considering the simple situation shown in Fig. 10-17.
The rigid body there consists of a particle of mass m on one end of a massless rod
of length r. The rod can move only by rotating about its other end, around a rota-
tion axis (an axle) that is perpendicular to the plane of the page.Thus, the particle
can move only in a circular path that has the rotation axis at its center.

A force acts on the particle. However, because the particle can move
only along the circular path, only the tangential component Ft of the force (the
component that is tangent to the circular path) can accelerate the particle along
the path. We can relate Ft to the particle’s tangential acceleration at along the
path with Newton’s second law, writing

Ft � mat.

The torque acting on the particle is, from Eq. 10-40,

t � Ftr � matr.

From Eq. 10-22 (at � ar) we can write this as

t � m(ar)r � (mr 2)a. (10-43)

The quantity in parentheses on the right is the rotational inertia of the particle
about the rotation axis (see Eq. 10-33, but here we have only a single particle).
Thus, using I for the rotational inertia, Eq. 10-43 reduces to

t � Ia (radian measure). (10-44)

If more than one force is applied to the particle, Eq. 10-44 becomes

tnet � Ia (radian measure), (10-45)

which we set out to prove. We can extend this equation to any rigid body rotating
about a fixed axis, because any such body can always be analyzed as an assembly
of single particles.

F
:

Figure 10-17 A simple rigid body, free to
rotate about an axis through O, consists of
a particle of mass m fastened to the end of
a rod of length r and negligible mass. An
applied force causes the body to rotate.F

:

O
x

y

Rod

θ 

Rotation axis 

r

m
Fr

Ft

φ 

F

The torque due to the tangential
component of the force causes
an angular acceleration around
the rotation axis.
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Additional examples, video, and practice available at WileyPLUS

KEY IDEA 

Because the moment arm for is no longer zero, the torqueF
:

g

Checkpoint 7
The figure shows an overhead view of a meter stick that can pivot about the point indicated, which is
to the left of the stick’s midpoint.Two horizontal forces, and , are applied to the stick. Only is
shown. Force is perpendicular to the stick and is applied at the right end. If the stick is not to turn,
(a) what should be the direction of , and (b) should F2 be greater than, less than, or equal to F1?F

:

2

F
:

2

F
:

1F
:

2F
:

1

F1

Pivot point 

Sample Problem 10.09 Using Newton’s second law for rotation in a basic judo hip throw

To throw an 80 kg opponent with a basic judo hip throw, you
intend to pull his uniform with a force and a moment arm
d1 � 0.30 m from a pivot point (rotation axis) on your right
hip (Fig. 10-18). You wish to rotate him about the pivot
point with an angular acceleration a of �6.0 rad/s2—that is,
with an angular acceleration that is clockwise in the figure.
Assume that his rotational inertia I relative to the pivot
point is 15 kg 
m2.

(a) What must the magnitude of be if, before you throw
him, you bend your opponent forward to bring his center of
mass to your hip (Fig. 10-18a)?

KEY IDEA 

We can relate your pull on your opponent to the given an-
gular acceleration a via Newton’s second law for rotation
(tnet � Ia).

Calculations: As his feet leave the floor, we can assume that
only three forces act on him: your pull , a force on him
from you at the pivot point (this force is not indicated in Fig.
10-18), and the gravitational force .To use tnet � Ia, we need
the corresponding three torques,each about the pivot point.

From Eq. 10-41 (t � F), the torque due to your pull F
:

r�

F
:

g

N
:

F
:

F
:

F
:

F
:

Figure 10-18 A judo hip throw (a) correctly executed and (b) incor-
rectly executed.

Opponent's
 center of

mass

Moment arm d1
of your pull 

Pivot
on hip 

Moment arm d2
of gravitational 

force on 
opponent

Moment
arm d1

of your pull

FgFg

(a) (b)

F
F

is equal to � F, where is the moment arm and the
sign indicates the clockwise rotation this torque tends to
cause. The torque due to is zero, because acts at theN

:
N
:

r�d1d1

pivot point and thus has moment arm � 0.
To evaluate the torque due to , we can assume that 

acts at your opponent’s center of mass. With the center of
mass at the pivot point, has moment arm � 0 and thusr�F

:
g

F
:

gF
:

g

r�

ponent is due to your pull , and we can write tnet � Ia as

�d1F � Ia.
We then find

� 300 N. (Answer)

(b) What must the magnitude of be if your opponent 
remains upright before you throw him, so that has a mo-
ment arm d2 � 0.12 m (Fig. 10-18b)?

F
:

g

F
:

F �
�Ia

d1
�

�(15 kg
m2)(�6.0 rad/s2)
0.30 m

F
:

the torque due to is zero. So, the only torque on your op-F
:

g

due to is now equal to d2mg and is positive because the
torque attempts counterclockwise rotation.

Calculations: Now we write tnet � Ia as

�d1F � d2mg � Ia,
which gives

From (a), we know that the first term on the right is equal to
300 N. Substituting this and the given data, we have

� 613.6 N 610 N. (Answer)

The results indicate that you will have to pull much harder if
you do not initially bend your opponent to bring his center
of mass to your hip. A good judo fighter knows this lesson
from physics. Indeed, physics is the basis of most of the mar-
tial arts, figured out after countless hours of trial and error
over the centuries.

�

F � 300 N �
(0.12 m)(80 kg)(9.8 m/s2)

0.30 m

F � �
Ia

d1
�

d2mg
d1

.

F
:

g
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Sample Problem 10.10 Newton’s second law, rotation, torque, disk

Figure 10-19a shows a uniform disk, with mass M � 2.5 kg
and radius R � 20 cm, mounted on a fixed horizontal axle.
A block with mass m � 1.2 kg hangs from a massless cord that
is wrapped around the rim of the disk. Find the acceleration of
the falling block, the angular acceleration of the disk, and the
tension in the cord.The cord does not slip, and there is no fric-
tion at the axle.

KEY IDEAS 

(1) Taking the block as a system, we can relate its accelera-
tion a to the forces acting on it with Newton’s second law
( ). (2) Taking the disk as a system, we can relate
its angular acceleration a to the torque acting on it with
Newton’s second law for rotation (tnet � Ia). (3) To combine
the motions of block and disk, we use the fact that the linear
acceleration a of the block and the (tangential) linear accel-
eration of the disk rim are equal. (To avoid confusion
about signs, let’s work with acceleration magnitudes and 
explicit algebraic signs.)

Forces on block: The forces are shown in the block’s free-
body diagram in Fig. 10-19b: The force from the cord is ,
and the gravitational force is , of magnitude mg. We can
now write Newton’s second law for components along a ver-
tical y axis (Fnet,y � may) as

T � mg � m(�a), (10-46)

where a is the magnitude of the acceleration (down the y
axis). However, we cannot solve this equation for a because
it also contains the unknown T.

Torque on disk: Previously, when we got stuck on the y axis,
we switched to the x axis. Here, we switch to the rotation of
the disk and use Newton’s second law in angular form. To
calculate the torques and the rotational inertia I, we take
the rotation axis to be perpendicular to the disk and through
its center, at point O in Fig. 10-19c.

The torques are then given by Eq. 10-40 (t � rFt). The
gravitational force on the disk and the force on the disk from
the axle both act at the center of the disk and thus at distance
r � 0, so their torques are zero.The force on the disk due to
the cord acts at distance r � R and is tangent to the rim of the
disk. Therefore, its torque is �RT, negative because the
torque rotates the disk clockwise from rest. Let a be the mag-
nitude of the negative (clockwise) angular acceleration. From
Table 10-2c, the rotational inertia I of the disk is . Thus
we can write the general equation tnet � Ia as

(10-47)�RT � 1
2 MR2(�a).

1
2MR2

T
:

F
:

g

T
:

at

F
:

net � m:a

This equation seems useless because it has two
unknowns, a and T, neither of which is the desired a.
However, mustering physics courage, we can make it useful
with this fact: Because the cord does not slip, the magnitude
a of the block’s linear acceleration and the magnitude at of
the (tangential) linear acceleration of the rim of the disk are
equal. Then, by Eq. 10-22 (at � ar) we see that here a �
a /R. Substituting this in Eq. 10-47 yields

(10-48)

Combining results: Combining Eqs. 10-46 and 10-48 leads to

. (Answer)

We then use Eq. 10-48 to find T:

(Answer)

As we should expect, acceleration a of the falling block is less
than g, and tension T in the cord (� 6.0 N) is less than the
gravitational force on the hanging block (� mg � 11.8 N).
We see also that a and T depend on the mass of the disk but
not on its radius.

As a check, we note that the formulas derived above
predict a � g and T � 0 for the case of a massless disk (M �
0). This is what we would expect; the block simply falls as a
free body. From Eq. 10-22, the magnitude of the angular ac-
celeration of the disk is

(Answer)a �
a
R

�
4.8 m/s2

0.20 m
� 24 rad/s2.

� 6.0 N.

T � 1
2 Ma � 1

2(2.5 kg)(4.8 m/s2)

� 4.8 m/s2

a � g
2m

M � 2m
� (9.8 m/s2)

(2)(1.2 kg)
2.5 kg � (2)(1.2 kg)

T � 1
2 Ma.

m

M

M R
O

Fg

(b)(a)

(c)

m

T

T

The torque due to the 
cord's pull on the rim 
causes an angular 
acceleration of the disk.

These two forces 
determine the block's 
(linear) acceleration.

We need to relate 
those two
accelerations.

y

Figure 10-19 (a) The falling block causes the disk to rotate. (b) A
free-body diagram for the block. (c) An incomplete free-body 
diagram for the disk.

Additional examples, video, and practice available at WileyPLUS
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Work and Rotational Kinetic Energy
As we discussed in Chapter 7, when a force F causes a rigid body of mass m to ac-
celerate along a coordinate axis, the force does work W on the body. Thus, the
body’s kinetic energy can change. Suppose it is the only energy of the(K � 1

2 mv2)

10-8 WORK AND ROTATIONAL KINETIC ENERGY

After reading this module, you should be able to . . .

10.29 Calculate the work done by a torque acting on a rotat-
ing body by integrating the torque with respect to the an-
gle of rotation.

10.30 Apply the work–kinetic energy theorem to relate the
work done by a torque to the resulting change in the rota-
tional kinetic energy of the body.

10.31 Calculate the work done by a constant torque by relat-
ing the work to the angle through which the body rotates.

10.32 Calculate the power of a torque by finding the rate at
which work is done.

10.33 Calculate the power of a torque at any given instant by
relating it to the torque and the angular velocity at that instant.

● The equations used for calculating work and power in rota-
tional motion correspond to equations used for translational
motion and are

and P �
dW
dt

� tv.

W � �uf

ui

t du

● When t is constant, the integral reduces to

W � t(uf � ui).

● The form of the work – kinetic energy theorem used for 
rotating bodies is

�K � Kf � Ki � 1
2 Ivf

2 � 1
2�vi

2 � W.

Learning Objectives

Key Ideas

body that changes.Then we relate the change �K in kinetic energy to the work W
with the work–kinetic energy theorem (Eq. 7-10), writing

(work–kinetic energy theorem). (10-49)

For motion confined to an x axis, we can calculate the work with Eq. 7-32,

(work, one-dimensional motion). (10-50)

This reduces to W � Fd when F is constant and the body’s displacement is d.
The rate at which the work is done is the power, which we can find with Eqs. 7-43
and 7-48,

(power, one-dimensional motion). (10-51)

Now let us consider a rotational situation that is similar. When a torque
accelerates a rigid body in rotation about a fixed axis, the torque does work W
on the body. Therefore, the body’s rotational kinetic energy can
change. Suppose that it is the only energy of the body that changes. Then we
can still relate the change �K in kinetic energy to the work W with the
work – kinetic energy theorem, except now the kinetic energy is a rotational 
kinetic energy:

(work–kinetic energy theorem). (10-52)

Here, I is the rotational inertia of the body about the fixed axis and vi and vf are
the angular speeds of the body before and after the work is done.

�K � Kf � Ki � 1
2 Ivf

2 � 1
2�vi

2 � W

(K � 1
2 I�2)

P �
dW
dt

� Fv

W � �xf

xi

F dx

�K � Kf � Ki � 1
2 mvf

2 � 1
2 mvi

2 � W
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Also, we can calculate the work with a rotational equivalent of Eq. 10-50,

(work, rotation about fixed axis), (10-53)

where t is the torque doing the work W, and ui and uf are the body’s angular
positions before and after the work is done, respectively. When t is constant,
Eq. 10-53 reduces to

W � t(uf � ui) (work, constant torque). (10-54)

The rate at which the work is done is the power, which we can find with the rota-
tional equivalent of Eq. 10-51,

(power, rotation about fixed axis). (10-55)

Table 10-3 summarizes the equations that apply to the rotation of a rigid body
about a fixed axis and the corresponding equations for translational motion.

Proof of Eqs. 10-52 through 10-55
Let us again consider the situation of Fig. 10-17, in which force rotates a rigid
body consisting of a single particle of mass m fastened to the end of a massless
rod. During the rotation, force does work on the body. Let us assume that the
only energy of the body that is changed by is the kinetic energy. Then we can
apply the work–kinetic energy theorem of Eq. 10-49:

�K � Kf � Ki � W. (10-56)

Using and Eq. 10-18 (v � vr), we can rewrite Eq. 10-56 as

(10-57)

From Eq. 10-33, the rotational inertia for this one-particle body is I � mr2.
Substituting this into Eq. 10-57 yields

which is Eq. 10-52.We derived it for a rigid body with one particle, but it holds for
any rigid body rotated about a fixed axis.

We next relate the work W done on the body in Fig. 10-17 to the torque t
on the body due to force . When the particle moves a distance ds along itsF

:

�K � 1
2 Ivf

2 � 1
2 �vi

2 � W,

�K � 1
2 mr 2vf

2 � 1
2 mr 2vi

2 � W.

K � 1
2 mv2

F
:

F
:

F
:

P �
dW
dt

� tv

W � �uf

ui

  t du

Table 10-3 Some Corresponding Relations for Translational and Rotational Motion

Pure Translation (Fixed Direction) Pure Rotation (Fixed Axis)

Position x Angular position u
Velocity v � dx/dt Angular velocity v � du/dt
Acceleration a � dv/dt Angular acceleration a � dv/dt
Mass m Rotational inertia I
Newton’s second law Fnet � ma Newton’s second law tnet � Ia
Work W � � F dx Work W � � t du
Kinetic energy Kinetic energy K � 1

2 Iv2K � 1
2 mv2

Power (constant force) P � Fv Power (constant torque) P � tv
Work–kinetic energy theorem W � �K Work–kinetic energy theorem W � �K
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Sample Problem 10.11 Work, rotational kinetic energy, torque, disk

Let the disk in Fig. 10-19 start from rest at time t � 0 and
also let the tension in the massless cord be 6.0 N and the an-
gular acceleration of the disk be �24 rad/s2. What is its rota-
tional kinetic energy K at t � 2.5 s?

KEY IDEA

We can find K with Eq. 10-34 We already know(K � 1
2 Iv2).

Calculations: First, we relate the change in the kinetic 
energy of the disk to the net work W done on the disk, using
the work–kinetic energy theorem of Eq. 10-52 (Kf � Ki � W).
With K substituted for Kf and 0 for Ki,we get

K � Ki � W � 0 � W � W. (10-60)

Next we want to find the work W. We can relate W to
the torques acting on the disk with Eq. 10-53 or 10-54. The
only torque causing angular acceleration and doing work is
the torque due to force on the disk from the cord, which isT

:

that , but we do not yet know v at t � 2.5 s.
However, because the angular acceleration a has the con-
stant value of �24 rad/s2, we can apply the equations for
constant angular acceleration in Table 10-1.

Calculations: Because we want v and know a and v0 (� 0),
we use Eq. 10-12:

v � v0 � at � 0 � at � at.

Substituting v � at and into Eq.10-34,we find

(Answer)

KEY IDEA

We can also get this answer by finding the disk’s kinetic 
energy from the work done on the disk.

� 90 J.
� 1

4 (2.5 kg)[(0.20 m)(�24 rad/s2)(2.5 s)]2

K � 1
2 Iv2 � 1

2(
1
2MR2)(at)2 � 1

4M(Rat)2

I � 1
2 MR2

I � 1
2 MR2

Additional examples, video, and practice available at WileyPLUS

circular path, only the tangential component Ft of the force accelerates the parti-
cle along the path. Therefore, only Ft does work on the particle. We write that
work dW as Ft ds. However, we can replace ds with r du, where du is the angle
through which the particle moves.Thus we have

dW � Ftr du. (10-58)

From Eq. 10-40, we see that the product Ftr is equal to the torque t, so we can
rewrite Eq. 10-58 as

dW � t du. (10-59)

The work done during a finite angular displacement from ui to uf is then

which is Eq. 10-53. It holds for any rigid body rotating about a fixed axis.
Equation 10-54 comes directly from Eq. 10-53.

We can find the power P for rotational motion from Eq. 10-59:

which is Eq. 10-55.

P �
dW
dt

� t 
du

dt
� tv,

W � �uf

ui

 t du,

equal to �TR. Because a is constant, this torque also must
be constant.Thus, we can use Eq. 10-54 to write

W � t(uf � ui) � �TR(uf � ui). (10-61)

Because a is constant, we can use Eq. 10-13 to find
uf � ui.With vi � 0, we have

.

Now we substitute this into Eq. 10-61 and then substitute the
result into Eq. 10-60. Inserting the given values T � 6.0 N
and a � �24 rad/s2, we have

(Answer)� 90 J.

� �1
2 (6.0 N)(0.20 m)(�24 rad/s2)(2.5 s)2

K � W � �TR(uf � ui) � �TR(1
2at2) � �1

2TRat2

uf � ui � vit � 1
2at2 � 0 � 1

2at2 � 1
2at2




